數(shù)據(jù)挖掘在高職院校就業(yè)信息管理中的應用研究
[Abstract]:With the increase of the number of graduates in our college, the guidance of employment work and employment direction is becoming more and more heavy. It is necessary to study and develop the employment information management system to enhance the employment level and employment direction of our college graduates. How to use data mining technology to obtain employment guidance information and improve work efficiency is particularly important. This paper mainly studies from the following three aspects: aiming at a large number of data in employment information system, Through data preprocessing, the key information related to employment is obtained, such as comprehensive scores, English grade, computer ability, personality orientation and so on. In view of the shortage of Apriori algorithm producing a large number of candidate sets and repeatedly scanning database, this paper uses the improved algorithm of multidimensional frequent itemsets based on APriori to map the transaction database to a Boolean matrix. The memory is allocated dynamically by layer increments, and the frequent itemsets are found by using vector operation of "and". The candidate set generated by the algorithm has been greatly reduced and applied to the employment management system in colleges and universities, which can shorten the scanning time, save memory cost and improve work efficiency. On the basis of association rule mining, C4.5 decision tree algorithm is used to construct employment decision tree, which classifies graduate students according to computer ability, English grade, comprehensive achievement, political outlook, personality orientation and other decision attributes. In order to improve the employment rate, employment level, improve the current training mechanism and other aspects, provide decision support for managers.
【學位授予單位】:廣西大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:G717.38;TP311.13
【參考文獻】
相關期刊論文 前10條
1 陳英;何中市;;關聯(lián)規(guī)則在高職學生綜合素質(zhì)測評分析中的應用[J];西南師范大學學報(自然科學版);2011年04期
2 俞有光;鐘子發(fā);馬捷;;基于等價類的Apriori優(yōu)化算法[J];計算機工程;2010年22期
3 崔貫勛;李梁;王柯柯;茍光磊;鄒航;;關聯(lián)規(guī)則挖掘中Apriori算法的研究與改進[J];計算機應用;2010年11期
4 張春生;宋琳琳;;分段支持度Apriori算法及應用[J];計算機工程與應用;2010年16期
5 肖建國;;論數(shù)據(jù)挖掘技術在高校就業(yè)工作中的應用[J];中國成人教育;2010年08期
6 李宏;李博;吳敏;陳松喬;;一種基于關聯(lián)規(guī)則的多類標分類算法[J];控制與決策;2009年04期
7 武建華;宋擒豹;沈均毅;謝建文;;基于關聯(lián)規(guī)則的特征選擇算法[J];模式識別與人工智能;2009年02期
8 龐哈利;高政威;左軍偉;卞玉倩;;基于變精度粗糙集的分類決策樹構造方法[J];系統(tǒng)工程與電子技術;2008年11期
9 孟凡榮;蔣曉云;田恬;施蕾;申麗君;;基于主成分分析的決策樹構造方法[J];小型微型計算機系統(tǒng);2008年07期
10 何軍;劉紅巖;杜小勇;;挖掘多關系關聯(lián)規(guī)則[J];軟件學報;2007年11期
相關碩士學位論文 前6條
1 沈懿卓;基于數(shù)據(jù)挖掘技術的高!毒蜆I(yè)指導》網(wǎng)絡課程建設研究[D];上海師范大學;2011年
2 程代娣;決策樹在高職院校畢業(yè)生就業(yè)工作中應用研究[D];安徽大學;2010年
3 孟媛媛;數(shù)據(jù)挖掘技術在再就業(yè)管理中的應用研究[D];河北大學;2010年
4 李海瓊;數(shù)據(jù)挖掘技術在遼寧大學生就業(yè)輔助決策分析系統(tǒng)中的研究與應用[D];沈陽工業(yè)大學;2009年
5 劉玉文;數(shù)據(jù)挖掘在高校招生中的研究與應用[D];上海師范大學;2008年
6 王志浩;數(shù)據(jù)挖掘在招生信息處理系統(tǒng)中的應用研究[D];山東師范大學;2006年
,本文編號:2159300
本文鏈接:http://sikaile.net/jiaoyulunwen/zhiyejiaoyulunwen/2159300.html