奧蘇貝爾的有意義接受學(xué)習(xí)理論在高中數(shù)學(xué)教學(xué)中的應(yīng)用研究
本文關(guān)鍵詞: 有意義接受學(xué)習(xí) 高中數(shù)學(xué) 教學(xué)設(shè)計 應(yīng)用研究 出處:《山東師范大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:在基礎(chǔ)課程改革的背景下,數(shù)學(xué)新課程改革提倡實施自主、合作、探究多元化的學(xué)習(xí)方式。接受學(xué)習(xí)雖然作為一種傳統(tǒng)的學(xué)習(xí)方式,卻遭到世人的冷落,更有人認(rèn)為接受學(xué)習(xí)是被動的、機械的學(xué)習(xí)方式,不符合新課程要求。美國當(dāng)代著名的教育理論家、心理學(xué)家奧蘇貝爾提出了有意義接受學(xué)習(xí)理論,認(rèn)為接受學(xué)習(xí)并不等同于機械學(xué)習(xí),強調(diào)有意義接受學(xué)習(xí)新知識的過程是學(xué)生積極主動構(gòu)建知識的過程,并且能夠在有限的時間里獲得系統(tǒng)的知識,形成良好的認(rèn)知結(jié)構(gòu)。此理論符合了新課程改革要求,為學(xué)校教學(xué)中采用有意義接受學(xué)習(xí)提供了很好的理論支撐。 本論文主要探討了有意義接受學(xué)習(xí)理論在高中數(shù)學(xué)教學(xué)中的應(yīng)用,檢測分析了運用有意義接受學(xué)習(xí)理論進行數(shù)學(xué)教學(xué)的效果,并調(diào)查了研究對象對此理論應(yīng)用在教學(xué)中的接受程度。具體要點如下: 一、闡述課題提出的背景以及意義,說明本文的研究思路及研究方法。通過查閱有意義接受學(xué)習(xí)理論的相關(guān)文獻,對有意義接受學(xué)習(xí)理論做詳細(xì)的解讀與闡釋;選擇合適的教學(xué)內(nèi)容和研究對象進行教學(xué)實驗實施;結(jié)合本研究的實驗結(jié)果及優(yōu)秀教師的教學(xué)經(jīng)驗,給出適合有意義接受學(xué)習(xí)的課堂教學(xué)建議。本文主要采用了文獻分析法、案例研究法和問卷調(diào)查法。 二、通過對有意義接受學(xué)習(xí)相關(guān)理論的論述及分析,應(yīng)用有意義接受學(xué)理論進行教學(xué)實驗程序的設(shè)計。內(nèi)容包括:通過前測選擇符合有意義接受學(xué)習(xí)條件的研究對象,并確定實驗班和控制班;以“函數(shù)的概念”和“函數(shù)的單調(diào)性”兩個高中數(shù)學(xué)中的核心知識點為研究內(nèi)容,在實驗班采用“有意義接受”教學(xué)模式進行課堂教學(xué),在控制班采用傳統(tǒng)教學(xué)模式(以講授—接受為主)進行授課;通過后測和延時測對比不同教學(xué)模式的教學(xué)效果;教學(xué)實施結(jié)束后,以問卷調(diào)查的方式了解實驗班學(xué)生對“有意義接受”教學(xué)模式的評價。 三、通過對比實驗班和控制班三次測試成績及對問卷調(diào)查的統(tǒng)計分析,得出以下結(jié)論:“有意義接受”教學(xué)模式的教學(xué)效果優(yōu)于傳統(tǒng)教學(xué)模式的教學(xué)效果;采用“有意義接受”教學(xué)模式進行教學(xué),促進了學(xué)生對數(shù)學(xué)新知識的學(xué)習(xí)和保持,加深了學(xué)生對數(shù)學(xué)新知的理解與掌握;采用“有意義接受”教學(xué)模式進行教學(xué)更能促進一般生對數(shù)學(xué)新知識的學(xué)習(xí),但優(yōu)等生的保持效果更明顯;“有意義接受”教學(xué)模式的教學(xué)效果與性別無關(guān)。 從問卷調(diào)查看,學(xué)生對于“有意義接受”教學(xué)模式的總體評價傾向于基本接受和適應(yīng),并認(rèn)為此教學(xué)模式可以提升自己學(xué)習(xí)的積極性,有助于對新知識的理解。
[Abstract]:In the background of the basic curriculum reform, the new mathematics curriculum reform advocates the implementation of autonomy, cooperation, and explore a variety of learning methods. Some people think that acceptance of learning is passive, mechanical learning methods, not in line with the requirements of the new curriculum. The famous contemporary American educational theorist, psychologist Osubel put forward the theory of meaningful acceptance of learning. The author thinks that accepting learning is not equivalent to mechanical learning, and emphasizes that the process of learning new knowledge with meaning is the process of students actively constructing knowledge and can acquire systematic knowledge in a limited time. This theory meets the requirements of the new curriculum reform and provides a good theoretical support for the use of meaningful learning in school teaching. This paper mainly discusses the application of meaningful receptive learning theory in mathematics teaching in senior high school, and examines and analyzes the effect of applying meaningful reception learning theory to mathematics teaching. The acceptance of this theory in teaching is investigated. The main points are as follows: 1. Explain the background and significance of the subject, explain the research ideas and methods of this paper, and consult the relevant literature of meaningful acceptance learning theory. The theory of meaningful reception learning is interpreted and explained in detail. Choose the appropriate teaching content and research object to carry out the teaching experiment; Based on the experimental results of this study and the teaching experience of excellent teachers, some suggestions for meaningful learning are given. This paper mainly adopts the methods of literature analysis, case study and questionnaire investigation. Secondly, through the discussion and analysis of the relevant theories of meaningful acceptance learning. Using the theory of meaningful acceptance to design the teaching experiment program, the contents include: selecting the research object according to the conditions of meaningful acceptance learning through pre-test, and determining the experimental class and the control class; Taking "the concept of function" and "monotonicity of function" as the research contents, the author adopts the "meaningful acceptance" teaching mode to carry out classroom teaching in the experimental class. In the control class, the traditional teaching mode (mainly lecture-acceptance) is adopted; The teaching effects of different teaching models are compared by post-test and time-delay test. After the implementation of the teaching, a questionnaire survey was conducted to find out the students' evaluation of the "meaningful acceptance" teaching mode. Thirdly, by comparing the results of three tests between the experimental class and the control class and the statistical analysis of the questionnaire, the following conclusions are drawn: the teaching effect of "meaningful acceptance" is better than that of the traditional teaching mode; The teaching mode of "meaningful acceptance" has promoted students' study and maintenance of new mathematics knowledge and deepened students' understanding and mastery of new mathematics knowledge. The teaching mode of "meaningful acceptance" can promote the general students to learn the new knowledge of mathematics, but the effect of maintaining the top students is more obvious. The teaching effect of meaningful acceptance has nothing to do with gender. From the questionnaire survey, the students' overall evaluation of the "meaningful acceptance" teaching model tends to accept and adapt, and think that this teaching model can enhance their learning enthusiasm. Contribute to the understanding of new knowledge.
【學(xué)位授予單位】:山東師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:G633.6
【參考文獻】
相關(guān)期刊論文 前10條
1 何先友,莫雷;奧蘇伯爾論認(rèn)知結(jié)構(gòu)、知識獲得與課堂教學(xué)模式[J];華南師范大學(xué)學(xué)報(社會科學(xué)版);1998年03期
2 陳華峰;奧蘇伯爾的有意義學(xué)習(xí)理論對課堂教學(xué)改革的啟示[J];湖南師范大學(xué)社會科學(xué)學(xué)報;2001年S2期
3 王洪玉;試析奧蘇貝爾的學(xué)習(xí)理論及其啟示[J];教學(xué)研究;2005年04期
4 傅寶英;簡評學(xué)生有意義學(xué)習(xí)的教學(xué)策略[J];教育科學(xué)研究;2002年05期
5 楊澤忠;;先行組織者策略在中學(xué)數(shù)學(xué)教學(xué)中運用的思考[J];中國現(xiàn)代教育裝備;2008年01期
6 魯獻蓉;數(shù)學(xué)概念學(xué)習(xí)與“先行組織者”[J];寧波大學(xué)學(xué)報(教育科學(xué)版);2000年01期
7 胡朝兵,張興瑜;意義學(xué)習(xí)的條件和教學(xué)策略[J];寧波大學(xué)學(xué)報(教育科學(xué)版);2001年06期
8 林彬;奧蘇貝爾的學(xué)習(xí)理論及其對創(chuàng)新教育的啟示[J];龍巖師專學(xué)報;2001年02期
9 楊超;;奧蘇貝爾的有意義學(xué)習(xí)理論在數(shù)學(xué)教學(xué)中的應(yīng)用[J];南昌高專學(xué)報;2010年03期
10 劉麗娟;;奧蘇貝爾有意義學(xué)習(xí)理論及對當(dāng)今教學(xué)的啟示[J];南方論刊;2009年05期
,本文編號:1490825
本文鏈接:http://sikaile.net/jiaoyulunwen/chuzhongjiaoyu/1490825.html