關(guān)聯(lián)規(guī)則挖掘在天貓商城中的應(yīng)用研究
本文選題:電子商務(wù) + 關(guān)聯(lián)規(guī)則挖掘��; 參考:《五邑大學(xué)》2013年碩士論文
【摘要】:隨著Internet技術(shù)的不斷發(fā)展,電子商務(wù)這一現(xiàn)代商業(yè)模式以其高效率、低成本和不受時(shí)空限制的特點(diǎn)成為企業(yè)商務(wù)活動(dòng)發(fā)展的趨勢(shì)。而天貓商城是亞洲最大的電子商務(wù)交易平臺(tái),其擁有近5億的注冊(cè)用戶數(shù),每天有超過6000萬的固定訪客,同時(shí)每天的在線商品數(shù)已經(jīng)超過了8億件,是中國(guó)電子商務(wù)網(wǎng)站發(fā)展的奇跡。巨大數(shù)量的用戶創(chuàng)造了巨大的交易數(shù)據(jù),然而從這些繁雜的交易數(shù)據(jù)中我們能得到有價(jià)值的信息卻相對(duì)較少,如何能從這些交易數(shù)據(jù)中獲取有利于賣家商業(yè)運(yùn)作以及制定營(yíng)銷策略的信息成為不容忽略的重要問題。 關(guān)聯(lián)規(guī)則挖掘(Association Rules Mining)是通過分析每個(gè)數(shù)據(jù),從大量數(shù)據(jù)中尋找規(guī)律的技術(shù)。該技術(shù)的出現(xiàn)為電子商務(wù)行為提供了強(qiáng)大的數(shù)據(jù)分析支持,將關(guān)聯(lián)規(guī)則挖掘技術(shù)應(yīng)用到大量的、復(fù)雜的交易數(shù)據(jù)中去,才能體現(xiàn)出關(guān)聯(lián)規(guī)則挖掘技術(shù)的研究?jī)r(jià)值,毫無疑問電子商務(wù)是數(shù)據(jù)挖掘應(yīng)用的最佳對(duì)象。通過對(duì)交易數(shù)據(jù)的挖掘,如商品的交易數(shù)量,交易種類,交易時(shí)間等,提取相關(guān)的交易知識(shí),將復(fù)雜,無序的交易數(shù)據(jù),變成賣家分析市場(chǎng),制定經(jīng)營(yíng)策略,管理客戶關(guān)系的有力依據(jù),從而實(shí)現(xiàn)電子商務(wù)活動(dòng)的真正價(jià)值。 論文討論了關(guān)聯(lián)規(guī)則挖掘中的主要算法之一,Apriori算法,分析了該算法在挖掘大量交易數(shù)據(jù)中的具體實(shí)現(xiàn)過程。通過記錄大量的天貓商城交易數(shù)據(jù),建立交易數(shù)據(jù)事務(wù)數(shù)據(jù)庫(kù),分別從買家和商品兩個(gè)角度進(jìn)行討論,對(duì)實(shí)際數(shù)據(jù)進(jìn)行算法應(yīng)用分析,結(jié)合實(shí)例證明了該算法在電子商務(wù)數(shù)據(jù)應(yīng)用關(guān)聯(lián)規(guī)則挖掘中的有效性,并根據(jù)算法挖掘得到的關(guān)聯(lián)規(guī)則,結(jié)合微博營(yíng)銷的方式,最終達(dá)到提升銷售的效果。
[Abstract]:With the development of Internet technology, E-commerce, as a modern business model, has become the trend of the development of business activities because of its high efficiency, low cost and no limitation of time and space. Tmall Mall is the largest e-commerce trading platform in Asia, with nearly 500 million registered users, more than 60 million regular visitors a day, and more than 800 million online goods every day. It is the miracle of the development of Chinese e-commerce website. A huge number of users create huge amounts of transaction data, but we get relatively little valuable information from these complex trading data. How to obtain the information that is beneficial to the seller's business operation and make the marketing strategy from these transaction data has become an important problem that can not be ignored. Association Rules Mining is a technique to find rules from a large number of data by analyzing each data. The emergence of this technology provides a powerful data analysis support for e-business behavior. Only when association rules mining technology is applied to a large number of complex transaction data, can the research value of association rule mining technology be reflected. There is no doubt that electronic commerce is the best object for data mining applications. Through the mining of transaction data, such as the quantity, type and time of trade, and so on, the relevant transaction knowledge is extracted, and the complicated and disordered transaction data is turned into the seller to analyze the market and formulate the management strategy. Management of customer relationships on the basis of strength, so as to achieve the real value of e-commerce activities. In this paper, the Apriori algorithm, one of the main algorithms in association rule mining, is discussed, and the implementation process of the algorithm in mining a large number of transaction data is analyzed. By recording a large number of trading data of Tmall Mall, establishing transaction data transaction database, discussing the transaction data from two angles of buyer and commodity, analyzing the algorithm application of the actual data. The validity of the algorithm in the application of association rules in electronic commerce data is proved by an example. According to the association rules obtained by the algorithm and the marketing method of Weibo, the effect of sales promotion is finally achieved.
【學(xué)位授予單位】:五邑大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TP311.13;F724.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 劉暉;;Twitter:微博客時(shí)代的到來[J];傳媒;2009年10期
2 費(fèi)賢舉,王文琴,莊燕濱;基于關(guān)聯(lián)規(guī)則的數(shù)據(jù)挖掘技術(shù)在CRM中的應(yīng)用研究[J];常州工學(xué)院學(xué)報(bào);2005年04期
3 劉會(huì)平;關(guān)聯(lián)規(guī)則發(fā)現(xiàn)技術(shù)中的Apriori算法及FP—樹算法[J];飛行器測(cè)控學(xué)報(bào);2002年03期
4 余波;朱東華;劉卓君;;加權(quán)關(guān)聯(lián)規(guī)則挖掘算法在電子商務(wù)中的應(yīng)用[J];計(jì)算機(jī)工程與應(yīng)用;2008年17期
5 程繼華,郭建生,施鵬飛;挖掘所關(guān)注規(guī)則的多策略方法研究[J];計(jì)算機(jī)學(xué)報(bào);2000年01期
6 曹玉月;;Twitter類網(wǎng)絡(luò)營(yíng)銷價(jià)值淺析[J];新聞愛好者;2009年24期
7 吳小璐;;微博時(shí)代的企業(yè)品牌營(yíng)銷策略[J];中國(guó)商貿(mào);2010年29期
,本文編號(hào):1793698
本文鏈接:http://sikaile.net/guanlilunwen/kehuguanxiguanli/1793698.html