基于樣例學(xué)習(xí)理論的初中數(shù)學(xué)概念教學(xué)設(shè)計研究
本文選題:樣例 + 樣例學(xué)習(xí)理論 ; 參考:《渤海大學(xué)》2017年碩士論文
【摘要】:數(shù)學(xué)概念教學(xué)是中學(xué)數(shù)學(xué)教學(xué)的重要組成部分,也是學(xué)生獲得基本知識和形成基本技能的核心所在。對于中學(xué)數(shù)學(xué)而言,它研究的主要對象是數(shù)和形,而數(shù)學(xué)概念恰恰就是對數(shù)和形本質(zhì)屬性的反映,是一種關(guān)于數(shù)和形的本質(zhì)屬性的思維形式。因此要提高教學(xué)質(zhì)量,概念教學(xué)舉足輕重。概念教學(xué)看似簡單,把應(yīng)有的概念傳遞給學(xué)生就可以,其實不然。概念教學(xué)不僅體現(xiàn)在學(xué)生的學(xué)上,對教師的教也有一定要求。對構(gòu)成概念的每個詞句,每個標(biāo)點的分析都不可有絲毫差錯,否則就可能產(chǎn)生學(xué)生對概念的認知錯誤。雖然很多時候教師通過大量的練習(xí)可以達到教學(xué)目標(biāo)的要求,但是這種方法成功周期較長。如何設(shè)計一份高質(zhì)量的教學(xué)設(shè)計,讓學(xué)生由被動學(xué)轉(zhuǎn)變成為學(xué)生主動學(xué)才是關(guān)鍵。一個完善而優(yōu)質(zhì)的教學(xué)設(shè)計,體現(xiàn)在教師是否考慮到了學(xué)生的實際,是否考慮到了學(xué)生自學(xué)能力的強化和遷移能力的提高。當(dāng)學(xué)生面對一個新問題時,能否聯(lián)想到以前學(xué)過的舊知識,然后通過類比模仿來獨立解決新問題,這就要求教師在概念教學(xué)時善于尋找更好的教學(xué)方法。樣例教學(xué)法不失為一種好的教學(xué)方法。樣例學(xué)習(xí),是一種模仿式學(xué)習(xí),模仿可以理解為樣例學(xué)習(xí)的一種近遷移,模仿的對象就是樣例。樣例學(xué)習(xí)理論是一種深度模仿式學(xué)習(xí)理論,是一種自覺伴有理解、模式識別、模式歸納的模仿,它與創(chuàng)新有機結(jié)合,相得益彰,成為數(shù)學(xué)學(xué)習(xí)的主要方式,它要求學(xué)生主動總結(jié),歸納樣例中隱含的知識技能,獲得解決問題的一般方法。本文主要基于樣例學(xué)習(xí)理論,對初中數(shù)學(xué)概念教學(xué)設(shè)計提出一些建議和思考,并在其理論原則下給出初中數(shù)學(xué)概念形成和同化的兩個教學(xué)設(shè)計案例,以期能夠在一定程度上對教師優(yōu)化教學(xué)設(shè)計有所幫助,對學(xué)生自學(xué)能力和解決問題的能力有所提高。希望通過本文的研究能夠給一線教師一些參考和些許有價值的信息,對教師教學(xué)能夠起到啟示和借鑒作用。
[Abstract]:Mathematics concept teaching is an important part of mathematics teaching in middle school. It is also the core of students to acquire basic knowledge and form basic skills. For middle school mathematics, the main object of its research is number and form, and the concept of mathematics is the reflection of the essential attributes of logarithms and shapes, which is a form of thinking about the essential attributes of numbers and shapes. Therefore, to improve the quality of teaching, concept teaching plays an important role. Concept teaching seems simple, the concept should be transferred to the students can, in fact, it is not. Concept teaching is not only reflected in students' learning, but also has certain requirements for teachers' teaching. For every word or sentence that constitutes a concept, there must be no error in the analysis of each punctuation, otherwise students may have a cognitive error in the concept. Although teachers can achieve the goal of teaching through a lot of exercises, this method has a long period of success. How to design a high-quality teaching design and change students from passive learning to active learning is the key. A perfect and high quality teaching design is reflected in whether the teacher takes into account the students' reality, the enhancement of students' self-study ability and the improvement of their transfer ability. When students are faced with a new problem, can they think of the old knowledge they have learned before, and then solve the new problems independently by analogy imitation, which requires teachers to be good at finding better teaching methods in concept teaching. The sample teaching method is a good teaching method. Sample learning is a kind of imitating learning. Imitation can be understood as a near transfer of sample learning. The object of imitation is the sample. Sample learning theory is a kind of deep imitation learning theory. It is a kind of imitation of conscious accompanied understanding, pattern recognition and pattern induction. It is an organic combination with innovation and complement each other, and becomes the main way of mathematics learning. It requires students to actively summarize and summarize the implied knowledge and skills in the sample to obtain a general solution to the problem. Based on the model learning theory, this paper puts forward some suggestions and thoughts on the teaching design of mathematics concept in junior high school, and gives two teaching design cases of the formation and assimilation of mathematics concept in junior high school under its theoretical principle. To some extent, it can help teachers to optimize teaching design and improve students' self-study ability and problem-solving ability. It is hoped that the research in this paper can give some reference and some valuable information to the teachers, and it can enlighten and draw lessons from the teachers' teaching.
【學(xué)位授予單位】:渤海大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:G633.6
【參考文獻】
相關(guān)期刊論文 前10條
1 郝曉秋;;淺談小學(xué)數(shù)學(xué)概念的引入[J];中國校外教育;2016年21期
2 徐章韜;;論基于樣例學(xué)習(xí)理論的習(xí)題課教學(xué)設(shè)計[J];數(shù)學(xué)教育學(xué)報;2015年06期
3 甘衛(wèi)群;劉萬倫;;樣例的概念屬性呈現(xiàn)方式對初一學(xué)生分式概念學(xué)習(xí)的影響[J];數(shù)學(xué)教育學(xué)報;2015年06期
4 汪明;曹道平;;基于認知負荷理論的有效教學(xué)設(shè)計研究[J];現(xiàn)代教育技術(shù);2013年05期
5 高墩;;類比在數(shù)學(xué)概念教學(xué)中的作用探討[J];數(shù)學(xué)之友;2012年04期
6 趙海祥;;初中數(shù)學(xué)發(fā)散性思維能力培養(yǎng)策略[J];佳木斯教育學(xué)院學(xué)報;2012年01期
7 劉功林;;在數(shù)學(xué)教學(xué)中如何培養(yǎng)初中生的逆向思維能力[J];當(dāng)代教育論壇(教學(xué)研究);2011年06期
8 徐文彬;;數(shù)學(xué)概念的認識及其教學(xué)設(shè)計與課堂教學(xué)[J];課程·教材·教法;2010年10期
9 耿秀榮;湯服成;;體現(xiàn)數(shù)學(xué)變式教學(xué)方法的樣例設(shè)計[J];甘肅聯(lián)合大學(xué)學(xué)報(自然科學(xué)版);2010年04期
10 馬俊青;;數(shù)學(xué)樣例學(xué)習(xí)與學(xué)生數(shù)學(xué)知識形成關(guān)系的研究[J];數(shù)學(xué)教育學(xué)報;2009年04期
相關(guān)博士學(xué)位論文 前1條
1 邵光華;數(shù)學(xué)樣例學(xué)習(xí)的理論與實證研究[D];華東師范大學(xué);2003年
相關(guān)碩士學(xué)位論文 前9條
1 李非智;基于目標(biāo)教學(xué)法的中專數(shù)學(xué)概念課教學(xué)模式研究[D];云南師范大學(xué);2015年
2 王妍;樣例教學(xué)有效性的研究[D];青海師范大學(xué);2015年
3 劉偉;基于ACT-R理論下的初中數(shù)學(xué)概念課教學(xué)設(shè)計研究[D];上海師范大學(xué);2014年
4 姜璐璐;初中數(shù)學(xué)“問題串”教學(xué)的現(xiàn)狀研究[D];南京師范大學(xué);2014年
5 劉輝;初中數(shù)學(xué)例題教學(xué)現(xiàn)狀研究[D];華中師范大學(xué);2013年
6 曹蒙蒙;新課程背景下核心概念教學(xué)的實證研究[D];東北師范大學(xué);2011年
7 曾輝;自我解釋對數(shù)學(xué)問題遠近遷移的影響[D];首都師范大學(xué);2009年
8 閆慧芳;數(shù)學(xué)問題解決類比遷移的研究及其教學(xué)[D];山東師范大學(xué);2007年
9 周超;數(shù)學(xué)高層次思維的界定及評價研究[D];蘇州大學(xué);2003年
,本文編號:2105289
本文鏈接:http://sikaile.net/zhongdengjiaoyulunwen/2105289.html