高中數(shù)學(xué)中導(dǎo)數(shù)解題策略教學(xué)研究
本文選題:導(dǎo)數(shù) + 高考 ; 參考:《西北大學(xué)》2016年碩士論文
【摘要】:導(dǎo)數(shù)知識(shí)模塊是高中數(shù)學(xué)知識(shí)的重要組成部分,也是各省高考中的必考內(nèi)容,在整個(gè)高中數(shù)學(xué)學(xué)習(xí)活動(dòng)中有著必不可少的作用。導(dǎo)數(shù)常與函數(shù)性質(zhì)、不等式、解析幾何、數(shù)列等結(jié)合起來(lái)考查,對(duì)學(xué)生的思維能力和綜合運(yùn)用能力要求都比較高。本文對(duì)高中數(shù)學(xué)中導(dǎo)數(shù)解題策略加以研究幫助學(xué)生更好地認(rèn)識(shí)導(dǎo)數(shù),提高運(yùn)用導(dǎo)數(shù)解題策略的能力,另一方面從教師的教入手對(duì)導(dǎo)數(shù)解題策略教學(xué)進(jìn)行研究,為學(xué)生的學(xué)和教師的教提供—定的幫助。本文先對(duì)高中數(shù)學(xué)中導(dǎo)數(shù)的地位、知識(shí)點(diǎn)、考情和高考命題特征做了分析,總結(jié)高中導(dǎo)數(shù)學(xué)習(xí)過(guò)程中常用的數(shù)學(xué)思想方法,再?gòu)母呖颊骖}出發(fā)研究導(dǎo)數(shù)有關(guān)題型和解題策略。最后對(duì)導(dǎo)數(shù)解題策略教學(xué)進(jìn)行研究,指出導(dǎo)數(shù)解題策略教學(xué)應(yīng)遵循以學(xué)生為主體原則、代表性原則、適量性原則、漸進(jìn)性原則、形式多樣化原則和課堂內(nèi)外相互滲透原則。提出導(dǎo)數(shù)解題策略教學(xué)的心理模式為知識(shí)定位、問(wèn)題表征、模式識(shí)別、選擇策略、知識(shí)配備、檢測(cè)反思。最后給出導(dǎo)數(shù)解題策略教學(xué)案例為教師的教學(xué)提供一定的參考。本文的創(chuàng)新點(diǎn)在于從高考的角度去分析研究導(dǎo)數(shù)知識(shí)的解題策略,并結(jié)合解題策略進(jìn)行教學(xué)研究,使得教與學(xué)雙管齊下。
[Abstract]:Derivative knowledge module is an important part of senior high school mathematics knowledge, and it is also a necessary part of the college entrance examination in each province. It plays an indispensable role in the whole senior high school mathematics learning activities. The derivative is often combined with functional properties, inequalities, analytic geometry, series of numbers and so on, which requires students' ability of thinking and comprehensive application. This paper studies derivative problem solving strategies in senior high school mathematics to help students better understand derivative and improve their ability to use derivative problem solving strategies. On the other hand, the teaching of derivative problem solving strategies is studied from teachers' teaching. Provide-defined assistance to students and teachers in learning and teaching. This paper first analyzes the position, knowledge point, examination situation and the characteristics of college entrance examination proposition in senior high school mathematics, summarizes the mathematical thinking methods commonly used in the process of derivative learning in senior high school, and then studies the derivative related question types and problem solving strategies from the point of view of the real questions of the college entrance examination. Finally, this paper studies the teaching of derivative problem-solving strategy, and points out that the teaching of derivative problem-solving strategy should follow the principle of students as the main body, representativeness principle, moderate principle, gradual principle, diversified form principle and mutual penetration principle inside and outside the classroom. The psychological model of derivative problem-solving strategy teaching is knowledge orientation, problem representation, pattern recognition, strategy selection, knowledge allocation and examination and reflection. Finally, the derivative problem solving strategy teaching case is given to provide a certain reference for teachers' teaching. The innovation of this paper is to analyze and study the strategy of solving derivative knowledge from the point of view of college entrance examination, and carry out teaching research combined with the strategy of solving problems, which makes teaching and learning go hand in hand.
【學(xué)位授予單位】:西北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:G633.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 金偉兵;;高中導(dǎo)數(shù)學(xué)習(xí)需“適度、適機(jī)”[J];福建中學(xué)數(shù)學(xué);2015年09期
2 肖海濱;;例說(shuō)導(dǎo)數(shù)在方程及不等式有關(guān)問(wèn)題中的應(yīng)用[J];考試周刊;2014年87期
3 蘇凡文;;導(dǎo)數(shù)與定積分在數(shù)列中的應(yīng)用[J];河北理科教學(xué)研究;2014年03期
4 胡海燕;;導(dǎo)數(shù)公式在高中數(shù)學(xué)中的應(yīng)用[J];理科考試研究;2014年05期
5 陳四龍;;導(dǎo)數(shù)法解函數(shù)題的三個(gè)關(guān)鍵意識(shí)[J];中學(xué)數(shù)學(xué)研究;2011年07期
6 詹才友;;導(dǎo)數(shù)在方程及不等式有關(guān)問(wèn)題中的應(yīng)用[J];中國(guó)科教創(chuàng)新導(dǎo)刊;2011年09期
7 孫燈勛;;導(dǎo)數(shù)在數(shù)列問(wèn)題中的應(yīng)用[J];中學(xué)數(shù)學(xué)月刊;2007年10期
8 王桂蓮;導(dǎo)數(shù)在數(shù)列求和中的應(yīng)用[J];數(shù)學(xué)教學(xué)研究;2005年06期
9 羅增儒,羅新兵;作為數(shù)學(xué)教育任務(wù)的數(shù)學(xué)解題[J];數(shù)學(xué)教育學(xué)報(bào);2005年01期
10 傅世球 ,寧勇;高中數(shù)學(xué)解題的激活策略[J];中學(xué)數(shù)學(xué)教學(xué)參考;2002年06期
,本文編號(hào):2046340
本文鏈接:http://sikaile.net/zhongdengjiaoyulunwen/2046340.html