中學數(shù)學課堂提問結構研究
本文選題:數(shù)學課堂 + 提問結構; 參考:《華中師范大學》2017年碩士論文
【摘要】:數(shù)學學習是以思維為主的過程,而思維過程又是從問題開始的,數(shù)學課堂提問將思維與數(shù)學知識統(tǒng)一融合,體現(xiàn)知識形成的思維過程。但是提問不僅要關注某個問題的合理性和指向性,提問的整體邏輯結構也至關重要,系列問題的邏輯化使得單個問題具有啟發(fā)性,也讓數(shù)學知識的形成過程具有邏輯性,學生在此過程中便可不斷深入地理解知識。研究中學數(shù)學課堂的提問結構,可以揭示提問的結構化現(xiàn)狀,引起教師對提問結構化的重視,對中學數(shù)學課堂教學有著重要意義。本文共有六部分:第一章引言,整理已有文獻,討論問題提出的背景,確定研究的思路與方法。第二章文獻綜述,將已有研究歸為課堂提問的定義和分類、原則和策略、實證研究、問題鏈和提問結構四小節(jié)進行論述,并對這些研究成果進行綜述評價。第三章相關概念界定,從數(shù)學的抽象性、思維性、邏輯性分析數(shù)學課堂提問的概念,在已有研究基礎上,將提問結構分為遞進式、并列式和交叉式三類。第四章提問結構的理論和實驗研究,首先通過相關理論解釋提問結構的必要性;然后通過對比實驗,論證提問結構對數(shù)學教學的影響及其重要性。第五章教學案例統(tǒng)計分析,以教學案例的不同類別、學段、作者地區(qū)、作者單位為基本指標,從提問關注度、提問結構化程度和提問結構類型分布三個角度進行差異和特點分析,結論如下:第一,對提問的關注度在不同類別、學段和單位中存在顯著差異,不同地區(qū)對提問的關注度無差異;高中學段、中學教師、教學實錄對提問的關注度更高。第二,提問結構化程度在不同類別、單位中存在顯著差異,不同學段、地區(qū)的提問結構化程度無差異;高校、教學設計提問結構化程度較高。第三,不同類別、學段、地區(qū)、單位的提問結構類型分布均無差異。第四,所有教學案例的提問結構類型分布特點是交叉式最多,其次是遞進式,并列式極少。第六章結語,本研究的創(chuàng)新之處在于對提問結構進行類型劃分,并通過理論和實驗兩方面對提問結構的重要性進行論證;同時通過文獻計量的方法對教學案例進行分析,揭示提問結構化的現(xiàn)狀,以期為提問結構化的研究做出一定的貢獻。
[Abstract]:Mathematics learning is the process of thinking, and the process of thinking begins with the problem. Questions in mathematics classroom combine thinking with mathematical knowledge to reflect the thinking process of knowledge formation. But the question not only should pay attention to the rationality and directionality of a question, but also the whole logical structure of the question. The logic of a series of questions makes a single question enlighten, and the forming process of mathematical knowledge is logical. In this process, students can continuously understand the knowledge. The research on the structure of the middle school mathematics classroom can reveal the structure of the question, arouse teachers' attention to the structure of the question, and play an important role in the middle school mathematics classroom teaching. There are six parts in this paper: the first chapter introduces the existing literature, discusses the background of the problem, and determines the research ideas and methods. In the second chapter, the author classifies the existing research into four sections: the definition and classification of classroom questioning, principles and strategies, empirical research, question chain and question structure. The third chapter defines the related concepts, analyzes the concepts of mathematical classroom questioning from the abstractness, thinking and logic of mathematics. On the basis of existing research, the structure of questioning is divided into three categories: progressive, parallel and cross. The fourth chapter is the theoretical and experimental research on the structure of questioning. Firstly, it explains the necessity of the structure of questioning through the relevant theories, and then demonstrates the influence of the structure of questioning on mathematics teaching and its importance through comparative experiments. The fifth chapter is a statistical analysis of teaching cases, taking different categories of teaching cases, learning sections, author regions and author units as the basic indicators, from the perspective of questioning attention. The differences and characteristics of the structured degree of questioning and the type distribution of questioning structure are analyzed. The conclusions are as follows: first, there are significant differences in the degree of attention to questions in different categories, learning paragraphs and units. There is no difference in attention to questioning in different regions, and higher attention is paid to questioning in senior middle school, middle school teachers and teaching records. Second, there are significant differences in the structured degree of questioning in different categories and units, but there is no difference in the structured degree of questioning in different learning stages and regions; in colleges and universities, the structured degree of questioning in teaching design is relatively high. Thirdly, there is no difference in the distribution of question structure types among different categories, learning sections, regions and units. Fourth, the distribution characteristics of all teaching cases are the most cross type, the second is progressive type, and the second is juxtaposition. In the sixth chapter, the innovation of this study lies in the classification of the structure of questioning, and the importance of the structure of questioning is demonstrated through both theory and experiment, and the teaching cases are analyzed by the method of literature measurement. To reveal the current situation of structured questioning, in order to make some contributions to the research of structured questioning.
【學位授予單位】:華中師范大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:G633.6
【參考文獻】
相關期刊論文 前10條
1 韓紅軍;劉國慶;趙偉華;;高中數(shù)學課堂教學中“問題鏈”的類型及結構模式[J];數(shù)學教學研究;2015年01期
2 倪科技;;問題串的教學設計方式比較[J];中學數(shù)學教學參考;2015年Z1期
3 葉立軍;周芳麗;;基于錄像分析背景下的優(yōu)秀數(shù)學教師課堂提問能力的研究[J];數(shù)學教育學報;2014年03期
4 喬愛萍;;論弗賴登塔爾數(shù)學教育思想的現(xiàn)實意義[J];江蘇教育研究;2014年04期
5 周瑩;王華;;中美中學數(shù)學優(yōu)秀教師課堂提問的比較研究——以兩國同課異構的課堂錄像為例[J];數(shù)學教育學報;2013年04期
6 楊向東;豆雨松;;兩位不同專長的數(shù)學教師課堂提問結構的對比研究[J];上海教育科研;2013年03期
7 溫建紅;;數(shù)學課堂有效提問的內(nèi)涵及特征[J];數(shù)學教育學報;2011年06期
8 韓保席;;數(shù)學問題鏈教學法對避免產(chǎn)生數(shù)困生作用的研究[J];江蘇教育研究;2011年07期
9 王后雄;;“問題鏈”的類型及教學功能——以化學教學為例[J];教育科學研究;2010年05期
10 黃光榮;問題鏈方法與數(shù)學思維[J];數(shù)學教育學報;2003年02期
相關博士學位論文 前2條
1 宋曉平;數(shù)學課堂學習動力系統(tǒng)研究[D];南京師范大學;2006年
2 程廣文;數(shù)學課程提問研究[D];華東師范大學;2003年
相關碩士學位論文 前3條
1 汪露;基于文獻計量學的數(shù)學教育研究現(xiàn)狀[D];華中師范大學;2015年
2 武文鑫;中學數(shù)學課堂提問的現(xiàn)狀調(diào)查與實踐探索[D];南京師范大學;2013年
3 楊慧;高中數(shù)學教學的“問題鏈”設計研究[D];上海師范大學;2012年
,本文編號:1790046
本文鏈接:http://sikaile.net/zhongdengjiaoyulunwen/1790046.html