天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 醫(yī)學(xué)論文 > 腫瘤論文 >

780衍生物的合成、鑒定及其用于腫瘤靶向顯影與治療的實(shí)驗(yàn)研究

發(fā)布時(shí)間:2016-11-14 19:42

  本文關(guān)鍵詞:七甲川花菁類熒光小分子IR-780衍生物的合成、鑒定及其用于腫瘤靶向顯影與治療的實(shí)驗(yàn)研究,由筆耕文化傳播整理發(fā)布。


七甲川花菁類熒光小分子IR-780衍生物的合成、鑒定及其用于腫瘤靶向顯影與治療的實(shí)驗(yàn)研究

詳細(xì)信息    本館鏡像全文|  推薦本文 | 收藏本文 |   獲取CNKI官網(wǎng)全文

摘要

研究背景與目的
     盡管近幾十年來人們對腫瘤的發(fā)生發(fā)展、轉(zhuǎn)移等機(jī)制研究獲得了重要進(jìn)展,但由于仍缺乏靈敏的早期診斷、高特異性的靶向治療以及實(shí)時(shí)有效的治療監(jiān)測,惡性腫瘤依然是目前嚴(yán)重威脅人類健康的重大疾病。腫瘤診斷治療學(xué)(Tumor theranostics)是近些年提出來的一種腫瘤診治新策略,其核心是將腫瘤治療與實(shí)時(shí)顯影有效結(jié)合,引導(dǎo)醫(yī)生及時(shí)調(diào)整治療方案,提高腫瘤病人的生存率和生活質(zhì)量,為腫瘤個(gè)體化治療提供一種新途徑。由于制備同時(shí)具有腫瘤特異顯影與靶向治療作用的診斷治療劑(Theranosticagents)是同步實(shí)現(xiàn)腫瘤診斷與治療的重要途徑,因此近兩年就該類多功能抗腫瘤藥物的研發(fā)已成為繼分子靶向藥物后的新研究熱點(diǎn)。
     目前對于診斷治療劑的制備主要是通過兩種策略:一是通過多步化學(xué)連接策略,將腫瘤靶向配體,如葉酸、多肽、抗體、核酸適配體等,分別與造影劑和抗腫瘤藥物進(jìn)行連接,從而同時(shí)實(shí)現(xiàn)腫瘤靶向顯影與治療作用;另一種是基于納米材料的特殊性質(zhì),如利用尺寸依賴性的腫瘤組織增透與阻滯(EPR)效應(yīng),或利用其比表面積大,易于表面修飾各種靶向配體的優(yōu)點(diǎn),實(shí)現(xiàn)腫瘤藥物的被動(dòng)或主動(dòng)靶向遞送,同時(shí)利用納米材料自身顯影特性或進(jìn)一步偶聯(lián)顯影劑,實(shí)現(xiàn)腫瘤的靶向顯影與治療監(jiān)測。通過上述兩種策略,目前已經(jīng)獲得了一些具有潛在應(yīng)用價(jià)值的診斷治療劑。例如,99mTc標(biāo)記的阿霉素脂質(zhì)體已經(jīng)在進(jìn)入I期臨床試驗(yàn),用于頭頸鱗癌病人的治療與監(jiān)測。
     然而,通過多步化學(xué)連接策略制備診斷治療劑,可能會(huì)導(dǎo)致腫瘤配體靶向性的降低、顯影劑成像能力的減弱,甚至藥物抗腫瘤活性的喪失。此外,多步化學(xué)反應(yīng)與分離純化,還可能增加制備成本。特別是基于多功能納米材料策略制備的診斷治療劑,容易在內(nèi)皮網(wǎng)狀系統(tǒng),例如肝脾等組織器官沉積,存在制備復(fù)雜、成本較高、潛在毒性等缺點(diǎn),其應(yīng)用也受到了很大限制。因此,優(yōu)化診斷治療劑的制備方法,或發(fā)展新的制備策略具有重要研究意義。
     七甲川花菁類化合物是一類兩端氮雜環(huán)中間含有多個(gè)次甲基長共軛鏈的花菁小分子,其具有摩爾吸光系數(shù)大、熒光量子產(chǎn)率高、穩(wěn)定性好等優(yōu)點(diǎn),作為近紅外熒光探針,已經(jīng)被廣泛應(yīng)用于蛋白與核酸標(biāo)記、基因測序、動(dòng)物活體成像以及臨床造影等。其中,代表性分子吲哚菁綠(ICG),已經(jīng)在臨床上廣泛用于心臟、肝臟、眼底血管顯影等。最近,我們課題組首次報(bào)道七甲川花菁熒光小分子IR-780,不需要化學(xué)連接腫瘤靶向配體,即在多種腫瘤細(xì)胞及其荷瘤模型上顯示出良好的腫瘤靶向近紅外熒光顯影特性。進(jìn)一步亞細(xì)胞器共定位實(shí)驗(yàn)結(jié)果表明, IR-780選擇性蓄積在腫瘤細(xì)胞的線粒體內(nèi),其親脂性離域型陽離子特性可能與其靶向腫瘤細(xì)胞線粒體密切相關(guān)。
     由于IR-780具有良好的腫瘤選擇性和近紅外熒光顯影特性,其也為腫瘤靶向診斷治療藥物的研究提供了新的思路和途徑。基于課題組前期研究基礎(chǔ),本研究設(shè)想:(1)IR-780能否作為抗腫瘤藥物的新型靶向載體,即通過化學(xué)連接策略,將抗腫瘤藥物與IR-780進(jìn)行共價(jià)連接,能否獲得同時(shí)具有腫瘤靶向近紅外顯影與治療作用的多功能化合物?(2)能否不經(jīng)過化學(xué)連接抗腫瘤藥物策略,直接通過對IR-780分子結(jié)構(gòu)進(jìn)行修飾,通過類似物的合成與篩選,獲得自身同時(shí)具有腫瘤靶向顯影與治療作用的新型多功能診斷治療劑,為腫瘤診斷治療劑探索新的制備策略,為腫瘤個(gè)體化治療提供新途徑。
     研究方法與結(jié)果
     為了驗(yàn)證上述假設(shè),獲得同時(shí)具有腫瘤靶向、近紅外熒光顯影與治療作用的多功能七甲川花菁分子,本論文分三個(gè)部分開展研究,主要結(jié)果如下:
     1. IR-780羧基衍生物IR-808的合成及腫瘤近紅外熒光顯影特性的鑒定
     1.1首先建立并優(yōu)化了該類七甲川花菁類熒光小分子的合成方法,分別對合成該類七甲川花菁熒光小分子需要的三步反應(yīng),即Vilsmeier-Haack甲;-烷基化、縮合反應(yīng)進(jìn)行了改進(jìn)。與以往文獻(xiàn)中報(bào)道的常用合成方法相比,新建立的合成方法具有高效簡潔、易大量制備等優(yōu)點(diǎn),為大量合成七甲川花菁熒光小分子、進(jìn)一步化學(xué)修飾與藥物連接奠定了基礎(chǔ)。
     1.2衍生合成了含有羧基官能團(tuán)的IR-780衍生物—IR-808。鑒于IR-780缺乏可供直接化學(xué)連接抗腫瘤藥物的活性反應(yīng)官能團(tuán),需要對其進(jìn)行結(jié)構(gòu)修飾。本研究以6-溴己酸為原料,在合成IR-780的反應(yīng)原料中引入羧基活性反應(yīng)官能團(tuán),成功合成了含有兩個(gè)羧基活性反應(yīng)官能團(tuán)的IR-780衍生物IR-808,并經(jīng)過核磁共振氫譜(1H-NMR)、碳譜(13C-NMR)、高分辨質(zhì)譜(HRMS)測試確證其結(jié)構(gòu)。
     1.3IR-808腫瘤靶向近紅外熒光顯影特性的鑒定。經(jīng)光譜測試發(fā)現(xiàn),IR-808的最大吸收和發(fā)射波長均在700-900nm近紅外光譜區(qū),具有近紅外顯影特性和良好的血清穩(wěn)定性。體內(nèi)實(shí)驗(yàn)表明,IR-808在rTDMCs、HeLa及LCC三種腫瘤細(xì)胞動(dòng)物荷瘤模型中均顯示出較好的腫瘤靶向性,提示其用于腫瘤特異性顯影與診斷具有潛在應(yīng)用前景。研究結(jié)果表明,IR-808不僅保留了良好的腫瘤靶向近紅外熒光顯影特性,同時(shí)還引入了兩個(gè)可供化學(xué)連接反應(yīng)的羧基官能團(tuán),為進(jìn)一步化學(xué)修飾、藥物連接,或放射性核素標(biāo)記等奠定了基礎(chǔ);為獲得同時(shí)具有腫瘤靶向顯影與治療作用的多功能分子,或經(jīng)放射性核素等標(biāo)記后用于深部組織腫瘤成像與診斷提供了可能性。
     2. IR-808與抗癌藥物的化學(xué)連接及其腫瘤顯影和殺傷活性的實(shí)驗(yàn)研究
     2.1成功地將IR-808與臨床上常用的三種抗腫瘤藥物進(jìn)行了共價(jià)連接。利用IR-808具有羧基活性反應(yīng)官能團(tuán)的結(jié)構(gòu)特性,選擇臨床上常用的分子量小、抗瘤譜廣、活性強(qiáng)但選擇性差的抗腫瘤藥物,包括美法侖(Melphalan)、5-氟尿嘧啶(5-Fu)、阿霉素(DOX),分別與IR-808進(jìn)行化學(xué)連接,獲得與美法侖的連接物IR-808NM,與5-Fu的連接物IR-808-5Fu以及與阿霉素的共價(jià)連接物IR-808DOX。前兩者獲得純品化合物,其結(jié)構(gòu)經(jīng)過1H NMR及HRMS測試所確定。后者經(jīng)HRMS測試證明阿霉素與IR-808連接成功,但經(jīng)反復(fù)優(yōu)化反應(yīng)與純化條件,未獲得純品IR-808DOX。
     2.2對新合成的共價(jià)連接產(chǎn)物進(jìn)行腫瘤顯影與殺傷活性的評(píng)價(jià)。通過上述化學(xué)連接策略,將IR-808成功與抗腫瘤藥物連接并獲得純品的新共價(jià)連接物IR-808NM、IR-808-5Fu分別進(jìn)行評(píng)價(jià)。結(jié)果表明,IR-808NM保留較好的腫瘤靶向特性,但I(xiàn)R-808-5Fu則失去了腫瘤靶向性。進(jìn)一步應(yīng)用MG63骨肉瘤細(xì)胞和SW480結(jié)腸癌細(xì)胞進(jìn)行IR-808NM的抗腫瘤活性評(píng)價(jià)。結(jié)果顯示,IR-808NM對兩種細(xì)胞的生長抑制活性顯著高于對照藥美法侖。因此,通過化學(xué)連接策略,本研究成功獲得了同時(shí)具有腫瘤靶向顯影與治療作用的新型多功能熒光小分子IR-808NM,驗(yàn)證了IR-780類似熒光小分子可作為抗腫瘤藥物靶向載體的設(shè)想。
     3. IR-808酯化衍生物的合成與抗腫瘤活性研究
     鑒于我們的研究和相關(guān)文獻(xiàn)報(bào)道IR-780和某些花菁類分子在較高劑量時(shí)可表現(xiàn)出一定的線粒體毒性,本研究提出,通過對IR-808進(jìn)行酯化衍生化,以提高親脂性,使其更容易跨過磷脂雙層疏水性的線粒體膜,從而增大其在線粒體的濃度及毒性,可望獲得不需要化學(xué)連接抗腫瘤藥物,自身具有腫瘤靶向、近紅外熒光顯影與抗腫瘤活性的新型多功能小分子。
     3.1IR-808酯化衍生物的高效合成及其近紅外熒光顯影特性的鑒定。為了提高IR-808親脂性,顯著增強(qiáng)其進(jìn)入細(xì)胞及其線粒體的濃度與毒性,在IR-808的基礎(chǔ)上,設(shè)計(jì)合成四個(gè)IR-808親脂性強(qiáng)的酯化衍生物,包括丁酯(IR-808DB)、己酯(IR-808DH)、環(huán)己酯(IR-808DCH)、苯酚酯(IR-808DP),均為全新結(jié)構(gòu)的化合物,未見文獻(xiàn)報(bào)道。所建立的合成方法具有高效、易于大量制備等優(yōu)點(diǎn)。四種IR-808酯類衍生物在甲醇、DMSO、血清中的最大吸收和發(fā)射波長均在近紅外區(qū)域,具有比ICG更高的摩爾吸光系數(shù)和熒光量子產(chǎn)率。
     3.2篩選獲得IR-808DB具有顯著抗腫瘤活性。應(yīng)用人肺癌細(xì)胞(A549)研究發(fā)現(xiàn),IR-808丁酯衍生物(IR-808DB)具有最顯著的抗腫瘤活性(IC50值為0.43μM)。進(jìn)一步在乳腺癌細(xì)胞(MDA231、MCF-7)、肝癌細(xì)胞(SMMC-7721, HepG2)、肺癌細(xì)胞(NCIH-460)等多種人類腫瘤細(xì)胞模型中評(píng)價(jià)其抗腫瘤活性,結(jié)果顯示IR-808DB分子對多種腫瘤細(xì)胞均具有顯著的生長抑制作用(IC50<6μM)。通過荷瘤動(dòng)物體內(nèi)研究,發(fā)現(xiàn)IR-808DB在rTDMCs、Lewis、HeLa以及A549等四種腫瘤模型上,均顯示出較強(qiáng)的抗腫瘤活性。以20mg/kg臨床藥物環(huán)磷酰胺(CTX)為陽性對照,發(fā)現(xiàn)5mg/kg IR-808DB可以明顯抑制腫瘤的生長。治療過程中,荷瘤動(dòng)物的重量和生理狀態(tài)未見明顯異常,主要臟器的組織切片未見明顯病理改變。此外,通過荷瘤動(dòng)物體內(nèi)研究,比較IR-808DB和新合成的共價(jià)連接物IR-808NM的抗腫瘤活性,還發(fā)現(xiàn)IR-808DB的抗腫瘤活性顯著高于IR-808NM。
     3.3IR-808DB具有良好的腫瘤靶向顯影特性。近紅外熒光活體成像顯示,IR-808DB在大鼠rTDMCs荷瘤模型上顯示出腫瘤靶向特性;離體臟器和腫瘤組織的近紅外熒光成像進(jìn)一步證實(shí)其在腫瘤組織的選擇性蓄積。研究還表明,在荷瘤第4天肉眼未見明顯腫瘤包塊形成時(shí),荷瘤部位即可顯示出近紅外熒光顯影;當(dāng)肉眼可見小于0.5cm的腫瘤包塊形成時(shí),荷瘤部位即具有顯著的近紅外熒光顯影特性,提示IR-808DB在腫瘤早期識(shí)別與診斷中可能具有研究價(jià)值。
     結(jié)論與創(chuàng)新
     本研究首先建立并優(yōu)化了IR-780多種衍生物的化學(xué)合成方法,制備了含有羧基官能團(tuán)的IR-808,證明其具有良好的腫瘤靶向近紅外熒光顯影特性,為連接抗腫瘤藥物或放射性核素等顯影劑,制備可用于深部組織腫瘤成像和具有腫瘤治療作用的多功能分子奠定了基礎(chǔ)。進(jìn)而,利用IR-808具有羧基活性反應(yīng)官能團(tuán)的結(jié)構(gòu)特性,成功地與三種抗腫瘤藥物進(jìn)行共價(jià)連接,篩選獲得了同時(shí)具有腫瘤靶向顯影與殺傷作用的衍生物IR-808NM,驗(yàn)證了IR-780類似熒光小分子可作為抗腫瘤藥物靶向載體的設(shè)想。最后,通過對IR-808進(jìn)行酯化修飾,提高其親脂性,從而增強(qiáng)其線粒體毒性,制備獲得了不需要化學(xué)連接抗腫瘤藥物,自身具有腫瘤靶向、近紅外熒光顯影與抗腫瘤活性的新型化合物IR-808DB,為進(jìn)一步研發(fā)新型的腫瘤個(gè)體化診斷治療藥物提供了新的策略和途徑。目前,IR-808DB已獲得國家發(fā)明專利授權(quán),其抗腫瘤機(jī)制與進(jìn)一步安全性評(píng)價(jià)等臨床前研究正在進(jìn)行中。
Background and Objectives:
     Despite recent research involving cancer development and metastasis has gainedsignificant progress, malignant tumor still remains one of the most deadly diseases in theworld, due to the inefficient early diagnosis, poor specificity of drugs resulting in severeadverse effects, and lack of sensitive and real-time modalities to monitor therapeuticresponse. Tuomr theranostics, a fusion of therapeutics and diagnostics for optimizingefficacy and safety in cancer treatment, has been considered as a significant alternativenessto overcome these challenges. This integration can monitor therapeutic efficacy followingtreatments which can expedite clinician’s individualized therapeutic decisions. Becausetheranostic agents are of importance to achieve the simultaneous multifunctionality oftumor targeting, imaging and therapy, their preparation has received a great deal of researchinterest in recent years.
     Currently, there are two main strategies explored for the obtainment of suchmultifunctional theranostic agents. One approach is through the multi-step chemicalconjugation of anticancer drugs and contrast agents with various cancer-targeted ligands,such as small molecules, antibodies, peptides, aptamers, etc. With the rapid development onadvanced multifunctional nanomaterials in nanomedicine, the other approach fordevelopment of cancer theranostic agents is based on nanoplatforms. They achievesimultaneous cancer specific detection and therapeutics by specifically delivering a highlypotent cytotoxic agent toward tumors either through the EPR effect of the tumormicrovasculature or through the conjugation of target ligands which can specifically bind tobiomakers highly associated with cancer cells. In many cases, advanced nanomaterialsendowed with imaging capability have been engineered to deliver and release drugsselectively toward tumor tissues. With the two strategies referred abrove, some cancer targeted therapeutic drugs are approved for clinical use or clinical trial. For example,99mTclabeing lipidosomes loaded with DOX has been approved to carry out clinic Phase I trial. Itachieves treatment of head and neck squamous carcinoma by SPECT imaging.
     However, the conjugation may alter the functional activities of tumor-targeted ligands,contrast agents or therapeutic agents. Multi-step chemical conjugation may lead to lowerthe specificity of tumor ligands, weaken the imaging intensity of contrast agents, or lose theantitumor activity of drugs. Meanwhile, additional reaction agents and purificationprocedure in the multi-step conjugation would require higher cost. In particular,nanoplatform-based strategy for the multifunctional nanotheranostic agents has been provenchallenging and is still at an early or proof-of-concept stage due to several fundamentalproblems and technical barriers, such as the lag effect from reticuloendothelial system (RES)and mononuclear phagocytic system, the difficulties in large scale preparation with highreproductivity, and the potential safe concerns for their long-term fate and toxicity. Thus,investigation of new strategy for obtainment of theranostic agents is high necessary.
     Heptamethine cyanine dyes with two terminal indole heterocyclic units linked by apolymethine bridge, characterized with high molar absorption coefficient and fluorescencequantum yield, good photostability, have been applied widely in labeling nucleic acids andproteins, gene sequencing, in vivo imaging animals. Of them, Indocyanine green (ICG)has been used in clinic extensively for visualizing tiny blood vessels of livers and eyes.Recently, our studies have characterized a heptamethine cyanine dye, IR-780with tumortargeting and NIR imaging properties without chemical conjugation of tumor target ligand.The targeting property of IR-780also has been confirmed in a broad spectrum of tumorcells and tumor xenografts, suggesting an attractive diagnostic agent for sensitive andnoninvasive tumor detection. The subcellular localization of IR-780in tumor cells furthershowed that the dye exclusively accumulated in the mitochondria of tumor cells. Theunique property of delocalized lipophilic cation, may give IR-780the ability to target andretain in mitochondria of tumor cells.
     Based on our previous findings on IR-780simultaneously with tumor targeting andNIR imaging properties, we hypothesized:(1) whether IR-780could be used as a carrier tochemically conjugate antitumor drugs for tumor targeted imaging and therapy;(2) whetherthe intrinsically multifunctional heptamethine cyanine dyes could be obtained by rational modification of IR-780without need of chemical conjugation of antitumor durgs. If thesedesigns mentioned above are proved, they would provide a valuable strategy for preparationof theranositc agents applied in cancer personalized therapy.
     Methods and Results:
     In order to verify the hypotheses referred above, and obtain multifunctionalheptamethine cyanine dyes with tumor targeted imaging and therapeutic properties, thisdissertation is divided into three chapters and main results are as follows:
     1. Synthesis and characterization of a carboxyl derivative of IR-780for tumortargeting and NIR imaging
     1.1A modified synthetic method for heptamethine cyanine dyes was established. Dueto low efficiency and small-scale limitation in preparing heptamethine cyanine dyes aspreviously reported in literatures, an improved synthetic method needs to be established.The synthetic routes of heptamethine cyanine dyes including Vilsmeier-Haack formylationreaction, N-alkylation reaction and condensation reaction, were optimized for theconditions of reaction and post-treatment, resulted in the improvement of syntheticefficiency with large-scale available preparation, providing a basis for further drugconjugation.
     1.2IR-808, a derivative of IR-780with two reactive carboxyl groups was synthesized.In order to obtain multifunctional heptamethine cyanine dyes simultaneously with tumortargeted imaging and antitumor activites, IR-780needs to chemically conjugate with anantitumor drug. However, IR-780is lack of available functional group in its structure forfurther conjugation. IR-808was synthesized by using6-bromo hexanoic acid as the startingmaterial to introduce a carboxyl group in a key raw material which was used to synthesizeIR-780. Its structure was comfirmed with Hydrogen nuclear magnetic resonance (1H-NMR),Carbon-nuclear magnetic resonance (13C-NMR) and High resolution mass spectrum(HRMS).
     1.3IR-808was identified with good tumor targeting and NIR imaging properties.After determining the spectra of IR-808, it was found the peak wavelength of absorbtionand emission was in the NIR region (700-900nm). IR-808exhibited NIR fluorescentimaging ability and pretty good stability in serum. The preferential in vivo tumoraccumulation of IR-808was comfirmed in rTDMCs, HeLa and LLC tumor xenografts, suggesting a prospective potential used for tumor specific imaging and diagnosis. Insummary, our results showed that IR-808with two reactive carboxyl groups exhibited thetumor targeting and NIR imaging properties, providing a basis for further drug conjugation.This finding also provides a possibility in developing a radionuclide-labelled heptamethinecyanine dyes for deep-tumor imaging and diagnosis.
     2. Conjugation of IR-808with antitumor drugs for tumor-targeted imaging andtreatment
     2.1Three clinically available antitumor drugs were covalently conjugated with IR-808.On the basis of the above studies, IR-808was further designed to conjugate with antitumordrugs. We successfully conjugated IR-808with Melphalan,5-Fluoro-2,4(1H,3H)pyrimidinedione (5-Fu), Doxorubicin(DOX), and obtained IR-808NM, IR-808-5Fu andIR-808DOX, respectively. IR-808NM and IR-808-5Fu were afforded with high purity, andtheir structures were comfirmed with1H NMR and HRMS. Successful conjugation of DOXwith IR-808was ensured by the testing report of HRMS. However, IR-808DOX wasafforded with a low pure complex even through continuously optimizing the conditions ofreaction and purification.
     2.2The tumor targeted imaging and antitumor activity of IR-808NM and IR-808-5Fuwere investigated. The two conjugations were injected into the rTDMCs tumor-bearingmice to evaluate their specificity for tumor imaging. In vivo NIR imaging showed thatIR-808NM remained the tumor-targeted NIR imaging ability while IR-808-5Fu failed. Then,the antitumor activity of IR-808NM was evaluated with MG63osteosarcoma cancer cellsand SW480colon cancer cells. It was found that IR-808NM inhibited the growth of cancercells efficiently. Its antitumor activity was significantly higher than that of Melphalan.These results supported that we successfully developed a multifunctional heptamethinecyanine dye with chemical conjugation strategy, and verify the hypothesis that this kind oftumor targeting NIR dyes can be used as a carrier of antitumor drugs for tumor targetedimaging and therapy.
     3. Synthesis of esterified derivatives of IR-808for tumor treatment
     According to our previous work and others, some caynine dyes, including IR-780would exhibit mitochondrial toxicity at higher concentration. Because mitochondria areencircled with two lipophilic membranes, lipophilic agents are more readily transported across bistratal membranes to reach a higher concentration. Basing on these investigations,we hypothesized that esterification of IR-808, would increase its lipophilicity greatly, aswell as its mitochondrial accumulation and potential toxicity. In this case, multifunctionalheptamethine cyanine dyes simultaneously with tumor targeted imaging and antitumoractivity would be obtained without need of chemical conjugation to tumor specific ligands.
     3.1Four esterified derivatives of IR-808were synthesized and characterized with NIRimaging property. In order to improve the lipophilicity of IR-808, and significantly enhancetheir accumulation and toxicity in tumor mitochondria, several esterified derivatives ofIR-808including butyl ester (IR-808DB), hexyl ester (IR-808DH), cyclohexyl ester(IR-808DCH), phenol ester (IR-808DP) were prepared with a highly efficient andlarge-scale available method. All these newly synthesized molecules have not been reportedpreviously. These molecules in methanol, DMSO and serum exhibited the maximumabsorption and emission wavelengths in the NIR region. Compared with ICG, esterderivatives of IR-808exhibited higher molar extinction coefficient and fluorescencequantum yields.
     3.2IR-808DB was characterized with significant antitumor effect. Cytotoxicity ofIR-808and its ester derivatives were performed on A549human lung cancer cells. Studiesshowed that these ester derivatives exhibited diverse anticancer activities on A549carcinoma cells. Of them, IR-808DB displayed most remarkable antitumor activity with anIC50of0.43μM. We further confirmed the antitumor effect of IR-808DB in other humancancer cell lines, including breast cancer cells (MDA231and MCF-7), hepatoma cells(SMMC-7721, HepG2), and non-small-cell lung cancer NCIH-460cells, demonstrating apotent antitumor activity of IR-808DB (IC50<6μM) on a broad spectrum of tumor cells. Invivo tumoricidal activities of IR-808DB were then evaluated in rTDMCs, A549, LLC, andHeLa tumor xenografts. Results revealed that5mg/kg IR-808DB inhibited tumor growthobviously as compared to20mg/kg Cyclophosphamide (CXT) group, a classic antitumordrug which has been widely applied in clinic. Laudable tumoricidal activities of IR-808DBwere observed in rTDMCs, A549, LLC and HeLa tumor xenografts, suggest the potentantitumor activity of IR-808DB in a variety of tumor xenografts. Meanwhile, the bodyweight and physical conditions of mice after treatment were not changed significantly. Inaddition, organs harvested from the mice with IR-808DB treatment were subjected to histopathological analysis and also showed no apparent abnormalities. The tumor growthinhibition of IR-808DB was also compared with IR-808NM, and results revealed thatIR-808DB displayed significantly higher tumor growth inhibition effect than IR-808NMdid.
     3.3IR-808DB was demonstrated with the ability of tumor-targeted imaging. In vivoNIR fluorescence imaging of athymic nude mice bearing with rTDMCs tumor xenograftsshowed IR-80DB with tumor targeting capability. The fluorescent intensity of the dissectedorgans and tumors further confirmed the preferential accumulation of IR-808DB in tumors.To evaluate its potential application in tumor early diagnosis,0.4mg/kg (imaging dosage)of IR-808DB was injected into the rats bearing rTDMCs tumors through tail vein and thefluorescent signals associated with tumor site were clearly detected even the tumor was notvisualized by eyes, indicating a potential used for tumor early identification and diagnosis.
     Conclusion and Innovation:
     In this dissertation, we initially established a modified synthetic method for IR-780and its derivatives, synthesized an analogue of IR-780with reactive carboxyl groups(IR-808) with tumor targeting and NIR imaging properties, providing a basis for furtherdrug conjugation. Next, IR-808was conjugated with three clinically available antitumordrugs respectively, and a multifunctional derivative of IR-808with tumor targeting andantitumor activity (IR-808NM) was successfully obtained. These results supported that wesuccessfully developed a multifunctional heptamethine cyanine dye with chemicalconjugation strategy, and verify the hypothesis that this kind of tumor targeting NIR dyescan be used as a carrier of antitumor drugs for tumor targeted imaging and therapy. Finally,by esterification of IR-808to increase its lipophilicity as well as its mitochondrialaccumulation and toxicity, we eventually obtained a multifunctional heptamethine cyaninedye (IR-808DB) intrinsically with tumor targeted imaging and antitumor effect withoutneed of chemical conjugation to tumor specific ligands. As a potential antitumor drug,IR-808DB has advantages of not only good tumor targeting, potent antitumor effect andfine NIR imaging, but also small molecular weight, low cost and large-scale availablepreparation. This multifunctional small molecule presents a valuable strategy forpreparation of new theranositc agents in cancer personalized therapy.

引文

1曾紅梅,陳萬青.中國癌癥流行病學(xué)與防治研究現(xiàn)狀[J].化學(xué)進(jìn)展,2013(09):1415-1420.
    2Siegel R, Naishadham D, Jemal A. Cancer statistics,2013[J]. CA Cancer J Clin,2013,63(1):11-30.
    3Humphrey R W, Brockway-Lunardi L M, Bonk D T, et al. Opportunities and challenges in the development ofexperimental drug combinations for cancer[J]. J Natl Cancer Inst,2011,103(16):1222-1226.
    4Ozdemir V, Williams-Jones B, Glatt S J, et al. Shifting emphasis from pharmacogenomics to theragnostics[J]. NatBiotechnol,2006,24(8):942-946.
    5Zhang H, Tian M, Ignasi C, et al. Molecular image-guided theranostic and personalized medicine[J]. J BiomedBiotechnol,2011,2011:673697.
    6Qin S Y, Feng J, Rong L, et al. Theranostic GO-based nanohybrid for tumor induced imaging and potentialcombinational tumor therapy[J]. Small,2014,10(3):599-608.
    7Bahmani B, Bacon D, Anvari B. Erythrocyte-derived photo-theranostic agents: hybrid nano-vesicles containingindocyanine green for near infrared imaging and therapeutic applications[J]. Sci Rep,2013,3:2180.
    8Lee G Y, Qian W P, Wang L, et al. Theranostic nanoparticles with controlled release of gemcitabine for targetedtherapy and MRI of pancreatic cancer[J]. ACS Nano,2013,7(3):2078-2089.
    9Godovikova T S, Lisitskiy V A, Antonova N M, et al. Ligand-directed acid-sensitive amidophosphate5-trifluoromethyl-2'-deoxyuridine conjugate as a potential theranostic agent[J]. Bioconjug Chem,2013,24(5):780-795.
    10Yang Z, Lee J H, Jeon H M, et al. Folate-based near-infrared fluorescent theranostic gemcitabine delivery[J]. J AmChem Soc,2013,135(31):11657-11662.
    1Ahmed N, Fessi H, Elaissari A. Theranostic applications of nanoparticles in cancer[J]. Drug Discov Today,2012,17(17-18):928-934.
    Pan D. Theranostic nanomedicine with functional nanoarchitecture[J]. Mol Pharm,2013,10(3):781-782.
    3Caldorera-Moore M E, Liechty W B, Peppas N A. Responsive theranostic systems: integration of diagnostic imagingagents and responsive controlled release drug delivery carriers[J]. Acc Chem Res,2011,44(10):1061-1070.
    4Alberti C. From molecular imaging in preclinical/clinical oncology to theranostic applications in targeted tumortherapy[J]. Eur Rev Med Pharmacol Sci,2012,16(14):1925-1933.
    5Shen B Q, Xu K, Liu L, et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drugconjugates[J]. Nat Biotechnol,2012,30(2):184-189.
    6Cheng Z, Al Z A, Hui J Z, et al. Multifunctional nanoparticles: cost versus benefit of adding targeting and imagingcapabilities[J]. Science,2012,338(6109):903-910.
    7Zhang C, Liu T, Su Y, et al. A near-infrared fluorescent heptamethine indocyanine dye with preferential tumoraccumulation for in vivo imaging[J]. Biomaterials,2010,31(25):6612-6617.
    8Hilderbrand S A, Weissleder R. Near-infrared fluorescence: application to in vivo molecular imaging[J]. Curr OpinChem Biol,2010,14(1):71-79.
    1Okuda K, Okabe Y, Kadonosono T, et al.2-Nitroimidazole-tricarbocyanine conjugate as a near-infrared fluorescentprobe for in vivo imaging of tumor hypoxia[J]. Bioconjug Chem,2012,23(3):324-329.
    1Mishra A, Behera R K, Behera P K, et al. Cyanines during the1990s: a review[J]. Chem Rev,2000,100(6):1973-2012.
    2Stennett E M, Ciuba M A, Levitus M. Photophysical processes in single molecule organic fluorescent probes[J]. ChemSoc Rev,2014,43(4):1057-1075.
    3El-Aal R M A. Thiazoline and thiazoloxazole in synthesis of novel meso-substituted mono-, tri-, and hepta-methinecyanine dyes[J]. Dyes and Pigments,2004,61(3):251-261.
    1Kobayashi H, Ogawa M, Alford R, et al. New strategies for fluorescent probe design in medical diagnostic imaging[J].Chem Rev,2010,110(5):2620-2640.
    2Shershov V E, Spitsyn M A, Kuznetsova V E, et al. Near-infrared heptamethine cyanine dyes. Synthesis, spectroscopiccharacterization, thermal properties and photostability[J]. Dyes and Pigments,2013,97(2):353-360.
    3Guo Z, Park S, Yoon J, et al. Recent progress in the development of near-infrared fluorescent probes for bioimagingapplications[J]. Chem Soc Rev,2014,43(1):16-29.
    4Jun Yin, Younghee Kwon, Dabin Kim, Dayoung Lee, Gyoungmi Kim, Ying Hu, Ji-Hwan Ryu, and Juyoung Yoon.Cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues[J]. J.Am. Chem. Soc.,2014,136(14):5351-5358.
    5Sevick-Muraca E M. Translation of near-infrared fluorescence imaging technologies: emerging clinical applications[J].Annu Rev Med,2012,63:217-231.
    6Ishikawa D, Shinzawa H, Genkawa T, et al. Recent progress of near-infrared (NIR) imaging-development of novelinstruments and their applicability for practical situations[J]. Anal Sci,2014,30(1):143-150.
    1Becker A, Hessenius C, Licha K, et al. Receptor-targeted optical imaging of tumors with near-infrared fluorescentligands[J]. Nat Biotechnol,2001,19(4):327-331.
    2Liu F, Deng D, Chen X, et al. Folate-polyethylene glycol conjugated near-infrared fluorescence probe with hightargeting affinity and sensitivity for in vivo early tumor diagnosis[J]. Mol Imaging Biol,2010,12(6):595-607.
    3Kovar J L, Volcheck W, Sevick-Muraca E, et al. Characterization and performance of a near-infrared2-deoxyglucoseoptical imaging agent for mouse cancer models[J]. Anal Biochem,2009,384(2):254-262.
    Mahounga D M, Shan L, Jie C, et al. Synthesis of a novel L-methyl-methionine-ICG-Der-02fluorescent probe for invivo near infrared imaging of tumors[J]. Mol Imaging Biol,2012,14(6):699-707.
    5Xu Y, Zanganeh S, Mohammad I, et al. Targeting tumor hypoxia with2-nitroimidazole-indocyanine green dyeconjugates[J]. J Biomed Opt,2013,18(6):66009.
    6Cai W, Shin D W, Chen K, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in livingsubjects[J]. Nano Lett,2006,6(4):669-676.
    7Ogawa M, Kosaka N, Choyke P L, et al. In vivo molecular imaging of cancer with a quenching near-infraredfluorescent probe using conjugates of monoclonal antibodies and indocyanine green[J]. Cancer Res,2009,69(4):1268-1272.
    8Kim M Y, Jeong S. In vitro selection of RNA aptamer and specific targeting of ErbB2in breast cancer cells[J]. NucleicAcid Ther,2011,21(3):173-178.
    9Zhang C, Liu T, Su Y, et al. A near-infrared fluorescent heptamethine indocyanine dye with preferential tumoraccumulation for in vivo imaging[J]. Biomaterials,2010,31(25):6612-6617.
    1Zhang C, Peng Y, Wang F, et al. A synthetic cantharidin analog for the enhancement of doxorubicin suppression ofstem cell-derived aggressive sarcoma[J]. Biomaterials,2010,31(36):9535-9543.
    1Andreev O A, Dupuy A D, Segala M, et al. Mechanism and uses of a membrane peptide that targets tumors and otheracidic tissues in vivo[J]. Proc Natl Acad Sci U S A,2007,104(19):7893-7898.
    1Reynolds G A, Drexhage K H. Stable heptamethine pyrylium dyes that absorb in the infrared[J]. J Org Chem,1977,42(5):885-888.
    2Zhang Z, Achilefu S. Synthesis and evaluation of polyhydroxylated near-infrared carbocyanine molecular probes[J].Org Lett,2004,6(12):2067-2070.
    3Henary M, Pannu V, Owens E A, et al. Near infrared active heptacyanine dyes with unique cancer-imaging andcytotoxic properties[J]. Bioorg Med Chem Lett,2012,22(2):1242-1246.
    1Sundholm D, Taubert S, Pichierri F. Calculation of absorption and emission spectra of [n]cycloparaphenylenes: thereason for the large Stokes shift[J]. Phys Chem Chem Phys,2010,12(11):2751-2757.
    1Okuda K, Okabe Y, Kadonosono T, et al.2-Nitroimidazole-tricarbocyanine conjugate as a near-infrared fluorescentprobe for in vivo imaging of tumor hypoxia[J]. Bioconjug Chem,2012,23(3):324-329.
    2Andreev O A, Dupuy A D, Segala M, et al. Mechanism and uses of a membrane peptide that targets tumors and otheracidic tissues in vivo[J]. Proc Natl Acad Sci U S A,2007,104(19):7893-7898.
    1James M L, Gambhir S S. A molecular imaging primer: modalities, imaging agents, and applications[J]. Physiol Rev,2012,92(2):897-965.
    2Pierce M C, Javier D J, Richards-Kortum R. Optical contrast agents and imaging systems for detection and diagnosis ofcancer[J]. Int J Cancer,2008,123(9):1979-1990.
    3Hilderbrand S A, Weissleder R. Near-infrared fluorescence: application to in vivo molecular imaging[J]. Curr OpinChem Biol,2010,14(1):71-79.
    4王栩,趙謙,孫娟,,等.細(xì)胞內(nèi)活性小分子近紅外熒光成像探針[J].化學(xué)進(jìn)展,2013(Z1):179-191.
    5Chen X Y, Peng X J, Cui A J, et al. Photostabilities of novel heptamethine3H-indolenine cyanine dyes with differentN-substituents[J]. J Photoch Photobio A-Chemistry,2006,181(1):79-85.
    1Song F, Peng X, Lu E, et al. Syntheses, spectral properties and photostabilities of novel water-soluble near-infraredcyanine dyes[J]. J Photoch Photobio A-Chemistry,2004,168(1–2):53-57.
    2Kovalska V B, Volkova K D, Losytskyy M Y, et al.6,6'-Disubstituted benzothiazole trimethine cyanines--newfluorescent dyes for DNA detection[J]. Spectrochim Acta A Mol Biomol Spectrosc,2006,65(2):271-277.
    3Strekowski L, Mason C J, Lee H, et al. Synthesis of water-soluble near-infrared cyanine dyes functionalized with[(succinimido)oxy]carbonyl group[J]. J Heterocyclic Chem.,2003,40(5):913-916.
    4Kim J S, Kodagahally R, Strekowski L, et al. A study of intramolecular H-complexes of novel bis(heptamethinecyanine) dyes[J]. Talanta,2005,67(5):947-954.
    5Choi H S, Gibbs S L, Lee J H, et al. Targeted zwitterionic near-infrared fluorophores for improved optical imaging[J].Nat. Biotech.,2013,31(2):148-153.
    6Luo S, Zhang E, Su Y, et al. A review of NIR dyes in cancer targeting and imaging[J]. Biomaterials,2011,32(29):7127-7138.
    1Zhang E, Luo S, Tan X, et al. Mechanistic study of IR-780dye as a potential tumor targeting and drug deliveryagent[J]. Biomaterials,2014,35(2):771-778.
    2Panigrahi M, Dash S, Patel S, et al. Syntheses of cyanines: a review[J]. Tetrahedron,2012,68(3):781-805.
    3Henary M, Pannu V, Owens E A, et al. Near infrared active heptacyanine dyes with unique cancer-imaging andcytotoxic properties[J]. Bioorg Med Chem Lett,2012,22(2):1242-1246.
    1Guo Q, Luo S, Qi Q, et al. Peliminary structure-activity relationship study of heptamethine indocyanine dyes fortumor-targeted imaging[J]. J Innov Opt Heal Sci,2013,6(13500031).
    1Devos T, Thiessen S, Cuyle P J, et al. Long-term follow-up in a patient with the dermato-neuro syndrome treated withhigh-dose melphalan, thalidomide, and intravenous immunoglobulins for more than7years[J]. Ann Hematol,2014.
    2Luo Z, Chang J, Guo Y, et al. Continuous infusion of5-FU with split-dose cisplatin: an effective treatment foradvanced squamous-cell carcinoma of the head and neck[J]. Clin Invest Med,2011,34(1): E8-E13.
    3Tewey K M, Rowe T C, Yang L, et al. Adriamycin-induced DNA damage mediated by mammalian DNAtopoisomerase II[J]. Science,1984,226(4673):466-468.
    1Low P S, Kularatne S A. Folate-targeted therapeutic and imaging agents for cancer[J]. Curr Opin Chem Biol,2009,13(3):256-262.
    Siegel B A, Dehdashti F, Mutch D G, et al. Evaluation of111In-DTPA-folate as a receptor-targeted diagnostic agent forovarian cancer: initial clinical results[J]. J Nucl Med,2003,44(5):700-707.
    3Muller C, Hohn A, Schubiger P A, et al. Preclinical evaluation of novel organometallic99mTc-folate and99mTc-pteroateradiotracers for folate receptor-positive tumour targeting[J]. Eur J Nucl Med Mol Imaging,2006,33(9):1007-1016.
    4Eiber M, Takei T, Souvatzoglou M, Matthias Eiber, Toshiki Takei, Markus Schwaiger, and Ambros J. Beer.Performance of whole-body integrated18F-FDG PET/MR in comparison to PET/CT for evaluation of malignant bonelesions[J]. J Nucl Med,2014,55(2):191-197.
    5Hashida M, Nishikawa M, Yamashita F, et al. Cell-specific delivery of genes with glycosylated carriers[J]. Adv DrugDeliv Rev,2001,52(3):187-196.
    6Junutula J R, Raab H, Clark S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves thetherapeutic index[J]. Nat Biotechnol,2008,26(8):925-932.
    7Senter P D, Sievers E L. The discovery and development of brentuximab vedotin for use in relapsed Hodgkinlymphoma and systemic anaplastic large cell lymphoma[J]. Nat Biotechnol,2012,30(7):631-637.
    1Junutula J R, Flagella K M, Graham R A, et al. Engineered thio-trastuzumab-DM1conjugate with an improvedtherapeutic index to target human epidermal growth factor receptor2-positive breast cancer[J]. Clin Cancer Res,2010,16(19):4769-4778.
    Senter P D. Potent antibody drug conjugates for cancer therapy[J]. Curr Opin Chem Biol,2009,13(3):235-244.
    Wiseman G A, Witzig T E. Yttrium-90(90Y) ibritumomab tiuxetan (Zevalin) induces long-term durable responses inpatients with relapsed or refractory B-Cell non-Hodgkin's lymphoma[J]. Cancer Biother Radiopharm,2005,20(2):185-188.
    Kaminski M S, Tuck M, Estes J, et al.131I-tositumomab therapy as initial treatment for follicular lymphoma[J]. N EnglJ Med,2005,352(5):441-449.
    Sugahara K N, Teesalu T, Karmali P P, et al. Coadministration of a tumor-penetrating peptide enhances the efficacy ofcancer drugs[J]. Science,2010,328(5981):1031-1035.
    Morales A R, Yanez C O, Zhang Y, et al. Small molecule fluorophore and copolymer RGD peptide conjugates for exvivo two-photon fluorescence tumor vasculature imaging[J]. Biomaterials,2012,33(33):8477-8485.
    Shi J, Xiao Z, Kamaly N, et al. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedsidetranslation[J]. Acc Chem Res,2011,44(10):1123-1134.
    Mccarthy N. Running a MUC1[J]. Nat.Rev. Cancer,2012,12(5):317.
    1Moore A, Medarova Z, Potthast A, et al. In vivo targeting of underglycosylated MUC-1tumor antigen using amultimodal imaging probe[J]. Cancer Res,2004,64(5):1821-1827.
    Ray P, Viles K D, Soule E E, et al. Application of aptamers for targeted therapeutics[J]. Arch Immunol Ther Ex,2013,61(4):255-271.
    3Famulok M, Hartig J S, Mayer G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy[J].Chem.Rev.,2007,107(9):3715-3743.
    1Teicher B A, Chari R V. Antibody conjugate therapeutics: challenges and potential[J]. Clin Cancer Res,2011,17(20):6389-6397.
    2Vasir J K, Reddy M K, Labhasetwar V D. Nanosystems in drug targeting: Opportunities and challenges[J]. CurrNanosci,2005,1(1):47-64.
    3Cheng Z, Al Z A, Hui J Z, et al. Multifunctional nanoparticles: cost versus benefit of adding targeting and imagingcapabilities[J]. Science,2012,338(6109):903-910.
    1Anderson W M, Delinck D L, Benninger L, et al. Cytotoxic effect of thiacarbocyanine dyes on human colon carcinomacells and inhibition of bovine heart mitochondrial NADH-ubiquinone reductase activity via a rotenone-type mechanismby two of the dyes[J]. Biochem Pharmacol,1993,45(3):691-696.
    2Krieg M, Bilitz J M. Structurally modified trimethine thiacarbocyanine dyes. Effect of N-alkyl substituents onantineoplastic behavior[J]. Biochem Pharmacol,1996,51(11):1461-1467.
    1Youssif B G, Okuda K, Kadonosono T, et al. Development of a hypoxia-selective near-infrared fluorescent probe fornon-invasive tumor imaging[J]. Chem Pharm Bull (Tokyo),2012,60(3):402-407.
    2Zhang C, Peng Y, Wang F, et al. A synthetic cantharidin analog for the enhancement of doxorubicin suppression ofstem cell-derived aggressive sarcoma[J]. Biomaterials,2010,31(36):9535-9543.
    3Oh M, Tanaka T, Kobayashi M, et al. Radio-copper-labeled Cu-ATSM: an indicator of quiescent but clonogenic cellsunder mild hypoxia in a Lewis lung carcinoma model[J]. Nucl Med Biol,2009,36(4):419-426.
    1Cai W, Shin D W, Chen K, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in livingsubjects[J]. Nano Lett,2006,6(4):669-676.
    1Okuda K, Okabe Y, Kadonosono T, et al.2-Nitroimidazole-tricarbocyanine conjugate as a near-infrared fluorescentprobe for in vivo imaging of tumor hypoxia[J]. Bioconjug Chem,2012,23(3):324-329.
    1王理偉,王雷,李寧.臨床腫瘤基因組學(xué)與腫瘤個(gè)體化治療[J].臨床腫瘤學(xué)雜志,2010(06):481-486.
    1府偉靈,黃慶.腫瘤個(gè)體化治療[J].重慶醫(yī)學(xué),2008(03):225-226.
    2Xiong R, Soenen S J, Braeckmans K, et al. Towards theranostic multicompartment microcapsules: in-situ diagnosticsand laser-induced treatment[J]. Theranostics,2013,3(3):141-151.
    3Kim T H, Lee S, Chen X. Nanotheranostics for personalized medicine[J]. Expert Rev Mol Diagn,2013,13(3):257-269.
    4Caldorera-Moore M E, Liechty W B, Peppas N A. Responsive theranostic systems: integration of diagnostic imagingagents and responsive controlled release drug delivery carriers[J]. Acc Chem Res,2011,44(10):1061-1070.
    1Haubold M, Wiemer M, Gessner T, et al. Integrated smart systems for theranostic applications[J]. Biomed Tech (Berl),2013.
    1Jemal A, Siegel R, Xu J, Ward E. Cancer statistics,2010. CA-Cancer J Clin2010;60(5):277-300.
    2Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics,2000. CA-Cancer J Clin2000;50(1):7-33.
    Fass L. Imaging and cancer: a review. Mol Oncol2008;2(2):115-52.
    4Choy G, Choyke P, Libutti SK. Current advances in molecular imaging: noninvasive in vivo bioluminescent andfluorescent optical imaging in cancer research. Mol Imaging2003;2(4):303-12.
    5Hilderbrand SA, Weissleder R. Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin ChemBiol2010;14(1):71-9.
    1Nurunnabi M, Cho KJ, Choi JS, Huh KM, Lee Y-k. Targeted near-IR QDs-loaded micelles for cancer therapy andimaging. Biomaterials2010;31(20):5436-44.
    2Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliver Rev2010;62(11):1052-63.
    3Nel A, Xia T, M dler L, Li N. Toxic potential of materials at the nanolevel. Science2006;311(5761):622-7.
    4Hoshino A, Hanada S, Yamamoto K. Toxicity of nanocrystal quantum dots: the relevance of surface modifications.Arch Toxicol2011:1-14.
    5Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD. Cellular uptake and cytotoxicity of goldnanorods: molecular origin of cytotoxicity and surface effects. Small2009;5(6):701-8.
    Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes asfluorescent labels. Nat Methods2008;5(9):763-75.
    7Escobedo JO, Rusin O, Lim S, Strongin RM. NIR dyes for bioimaging applications. Curr Opin Chem Biol2010;14(1):64-70.
    8Gon alves MST. Fluorescent labeling of biomolecules with organic probes. Chem Rev2008;109(1):190-212.
    1Mishra A, Behera RK, Behera PK, Mishra BK, Behera GB. Cyanines during the1990s: a review. Chem Rev2000;100(6):1973-2012.
    1Ballou B, Ernst LA, Waggoner AS. Fluorescence imaging of tumors in vivo. Curr Med Chem2005;12(7):795-805.
    2Lavis LD, Raines RT. Bright ideas for chemical biology. ACS Chem Biol2008;3(3):142-55.
    3Kusano M, Tajima Y, Yamazaki K, Kato M, Watanabe M, Miwa M. Sentinel node mapping guided by indocyaninegreen fluorescence imaging: a new method for sentinel node navigation surgery in gastrointestinal cancer. Digest Surg2008;25(2):103-8.
    4Ishizawa T, Fukushima N, Shibahara J, Masuda K, Tamura S, Aoki T, et al. Real-time identification of liver cancers byusing indocyanine green fluorescent imaging. Cancer2009;115(11):2491-504.
    5Haughland RP. Molecular probes. Handbook of fluorescent probes and research chemicals,9th ed. Molecular ProbesInc, Eugene, OR,2002.
    6Górecki T, Patonay G, Strekowski L, Chin R, Salazar N. Synthesis of novel near-infrared cyanine dyes for metal ion
    7determination. J Heterocyclic Chem1996;33(6):1871-6.Patonay G, Antoine MD, Devanathan S, Strekowski L. Near-infrared probe for determination of solvent hydrophobicity.Appl Spectrosc1991;45(3):457-61.
    8Strekowski L. Heterocyclic polymethine fyes: dynthesis, properties and applications. Springer, Berlin/Heidelberg,2008
    9Chen X, Peng X, Cui A, Wang B, Wang L, Zhang R. Photostabilities of novel heptamethine3H-indolenine cyaninedyes with different N-substituents. J Photoch Photobio A2006;181(1):79-85.
    1Song F, Peng X, Lu E, Zhang R, Chen X, Song B. Syntheses, spectral properties and photostabilities of novelwater-soluble near-infrared cyanine dyes. J Photoch Photobio A2004;168(1-2):53-7.
    2Kovalska VB, Volkova KD, Losytskyy MY, Tolmachev OI, Balanda AO, Yarmoluk SM.6,6'-Disubstitutedbenzothiazole trimethine cyanines-new fluorescent dyes for DNA detection. Spectrochim Acta A Mol Biomol Spectrosc2006;65(2):271-7.
    3Yarmoluk SM, Kovalska VB, Lukashov SS, Slominskii YL. Interaction of cyanine dyes with nucleic acids.XII.[beta]-substituted carbocyanines as possible fluorescent probes for nucleic acids detection. Bioorg Med Chem Lett1999;9(12):1677-8.
    Peng X, Song F, Lu E, Wang Y, Zhou W, Fan J, et al. Heptamethine cyanine dyes with a large stokes shift and strongfluorescence: a paradigm for excited-state intramolecular charge transfer. J Am Chem Soc2005;127(12):4170-1.
    5Zhou LC, Zhao GJ, Liu JF, Han KL, Wu YK, Peng XJ, et al. The charge transfer mechanism and spectral properties of
    6a near-infrared heptamethine cyanine dye in alcoholic and aprotic solvents. J Photoch Photobio A2007;187(2-3):305-10.Kim JS, Kodagahally R, Strekowski L, Patonay G. A study of intramolecular H-complexes of novel bis(heptamethinecyanine) dyes. Talanta2005;67(5):947-54.
    7Gragg JL. Synthesis of near-infrared heptamethine cyanine dyes. Chemistry Theses.2010:28.
    8Volkova KD, Kovalska VB, Tatarets AL, Patsenker LD.Kryvorotenko DV,Yarmoluk SM. Spectroscopic study ofsquaraines as protein-sensitive fluorescent dyes. Dyes Pigments2007;72(3):285-92.
    1Gayathri Devi D, Cibin TR, Ramaiah D, Abraham A. Bis(3,5-diiodo-2,4,6-trihydroxyphenyl) squaraine: a novelcandidate in photodynamic therapy for skin cancer models in vivo. J Photoch Photobio B2008;92(3):153-9.
    2Umezawa K, Citterio D, Suzuki K. Water-soluble NIR fluorescent probes based on squaraine and their application forprotein labeling. Anal Sci2008;24(2):213-7.
    3Nakazumi H, Ohta T, Etoh H, Uno T, Colyer CL, Hyodo Y, et al. Near-infrared luminescent bis-squaraine dyes linkedby a thiophene or pyrene spacer for noncovalent protein labeling. Synthetic Met2005;153(1-3):33-6.
    4Gassensmith JJ, Baumes JM, Smith BD. Discovery and early development of squaraine rotaxanes. Chem Commun2009;(42):6329-38.
    1de la Torre G, Claessens CG, Torres T. Phthalocyanines: old dyes, new materials. putting color in nanotechnology.Chem Commun2007;(20):2000-15.
    2de la Torre G, Vázquez P, Agulló-López F, Torres T. Role of structural cactors in the nonlinear optical properties ofphthalocyanines and related compounds. Chem Rev2004;104(9):3723-50.
    3Tanaka Y, Shin J-Y, Osuka A. Facile synthesis of large meso-pentafluorophenyl-substituted expanded porphyrins. EurJ Org Chem2008;2008(8):1341-9.
    4Srinivasan A, Ishizuka T, Osuka A, Furuta H. Doubly N-confused hexaphyrin: a novel aromatic expanded porphyrin
    5that complexes bis-metals in the core. J Am Chem Soc2003;125(4):878-9.Xie YS, Yamaguchi K, Toganoh M, Uno H, Suzuki M, Mori S, et al. Triply N-confused hexaphyrins: near-infraredluminescent dyes with a triangular shape. Angew Chem Int Edit2009;48(30):5496-9.
    6Kuimova MK, Collins HA, Balaz M, Dahlstedt E, Levitt JA, Sergent N, et al. Photophysical properties and intracellularimaging of water-soluble porphyrin dimers for two-photon excited photodynamic therapy. Org Biomol Chem2009;7(5):889-96.
    1Nishiyama N, Jang W-D, Kataoka K. Supramolecular nanocarriers integrated with dendrimers encapsulatingphotosensitizers for effective photodynamic therapy and photochemical gene delivery. New J Chem2007;31(7):1074-82.
    2Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, et al. Imaging and photodynamic therapy: mechanisms,monitoring, and optimization. Chem Rev2010;110(5):2795-838.
    3Li W-S, Aida T. Dendrimer porphyrins and phthalocyanines. Chem Rev2009;109(11):6047-76.
    4Brown SB, Brown EA, Walker I. The present and future role of photodynamic therapy in cancer treatment. LancetOncol2004;5(8):497-508.
    5Killoran J, McDonnell SO, Gallagher JF, O'Shea DF. A substituted BF2-chelated tetraarylazadipyrromethene as anintrinsic dual chemosensor in the650-850nm spectral range. New J Chem2008;32(3):483-9.
    6Palma A, Tasior M, Frimannsson DO, Vu TT, Méallet-Renault R, O’Shea DF. New on-bead near-infrared fluorophoresand fluorescent sensor constructs. Org Lett2009;11(16):3638-41.
    1Rickert EL, Oriana S, Hartman-Frey C, Long X, Webb TT, Nephew KP, et al. Synthesis and characterization offluorescent4-hydroxytamoxifen conjugates with unique antiestrogenic properties. Bioconjugate Chem2010;21(5):903-10.
    2Donuru VR, Zhu S, Green S, Liu H. Near-infrared emissive BODIPY polymeric and copolymeric dyes. Polymer2010;51(23):5359-68.
    3Loudet A, Burgess K. BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev2007;107(11):4891-932.
    4Rurack K, Kollmannsberger M, Daub J. A highly efficient sensor molecule emitting in the near infrared (NIR):3,5-distyryl-8-(p-dimethylaminophenyl) difluoroboradiaza-s-indacene. New J Chem2001;25(2):289-92.
    5Umezawa K, Matsui A, Nakamura Y, Citterio D, Suzuki K. Bright, color-tunable fluorescent dyes in the vis/NIRregion: establishment of new “tailor-made” multicolor fluorophores based on borondipyrromethene. Chem–Eur J2009;15(5):1096-106.
    Killoran J, Allen L, Gallagher JF, Gallagher WM, O'Shea DF. Synthesis of BF2chelates oftetraarylazadipyrromethenes and evidence for their photodynamic therapeutic behavior. Chem Commun2002;(17):1862-3.
    7Loudet A, Bandichhor R, Burgess K, Palma A, McDonnell SO, Hall MJ, et al. B,O-chelated azadipyrromethenes asnear-IR probes. Org Lett2008;10(21):4771-4.
    1Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect.Eur J Pharm Biopharm2009;71(3):409-19.
    1Liu T, Wu LY, Hopkins MR, Choi JK, Berkman CE. A targeted low molecular weight near-infrared fluorescent probe
    2for prostate cancer. Bioorg Med Chem Lett2010;20(23):7124-6.Chen Y, Dhara S, Banerjee SR, Byun Y, Pullambhatla M, Mease RC, et al. A low molecular weight PSMA-based
    3fluorescent imaging agent for cancer. Biochem Bioph Res Co2009;390(3):624-9.Levi J, Cheng Z, Gheysens O, Patel M, Chan CT, Wang Y, et al. Fluorescent fructose derivatives for imaging breast
    4cancer cells. Bioconjugate Chem2007;18(3):628-34.Dasari M, Lee S, Sy J, Kim D, Lee S, Brown M, et al. Hoechst-IR: An imaging agent that detects necrotic tissue in vivo
    5by binding extracellular DNA. Org Lett2010;12(15):3300-3.Tung C-H, Lin Y, Moon WK, Weissleder R. A receptor-targeted near-infrared fluorescence probe for in vivo tumor
    6imaging. ChemBioChem2002;3(8):784-6.Wang W, Ke S, Kwon S, Yallampalli S, Cameron AG, Adams KE, et al. A new optical and nuclear dual-labeled
    7imaging agent targeting interleukin11receptor alpha-chain. Bioconjugate Chem2007;18(2):397-402.Jin ZH, Josserand V, Foillard S, Boturyn D, Dumy P, Favrot MC, et al. In vivo optical imaging of integrin α8ice using multivalent or monovalent cRGD targeting vectors. Mol Cancer2007;6:41.V-β3in
    Carpenter RD, Andrei M, Aina OH, Lau EY, Lightstone FC, Liu R, et al. Selectively targeting T-and B-celllymphomas: a benzothiazole antagonist of α4β1integrin. J Med Chem2008;52(1):14-9.
    Garanger E, Boturyn D, Jin Z, Dumy P, Favrot MC, Coll JL. New multifunctional molecular conjugate vector fortargeting, imaging, and therapy of tumors. Mol Ther2005;12(6):1168-75.
    1Achilefu S, Dorshow RB, Bugaj JE, Rajagopalan R. Novel receptor-targeted fluorescent contrast agents for in vivotumor imaging. Invest Radiol2000;35(8):479-85.
    2Becker A, Hessenius C, Licha K, Ebert B, Sukowski U, Semmler W, et al. Receptor-targeted optical imaging of tumorswith near-infrared fluorescent ligands. Nat Biotechnol2001;19(4):327-31.
    3Pham W, Medarova Z, Moore A. Synthesis and application of a water-soluble near-infrared dye for cancer detectionusing optical imaging. Bioconjugate Chem2005;16(3):735-40.
    4Citrin D, Lee AK, Scott T, Sproull M, Ménard C, Tofilon PJ, et al. In vivo tumor imaging in mice with near-infrared
    5labeled endostatin. Mol Cancer Ther2004;3(4):481-8.Ke S, Wen X, Gurfinkel M, Charnsangavej C, Wallace S, Sevick-Muraca EM, et al. Near-infrared optical imaging ofepidermal growth factor receptor in breast cancer xenografts. Cancer Res2003;63(22):7870-5.
    6Becker A, Riefke B, Ebert B, Sukowski U, Rinneberg H, Semmler W, et al. Macromolecular contrast agents for opticalimaging of tumors: comparison of indotricarbocyanine-labeled human serum albumin and transferrin. PhotochemPhotobiol2000;72(2):234-41.
    7Petrovsky A, Schellenberger E, Josephson L, Weissleder R, Bogdanov A. Near-infrared fluorescent imaging of tumorapoptosis. Cancer Res2003;63(8):1936-42.
    8Folli S, Westermann P, Braichotte D, Pelegrin A, Wagnieres G, van den Bergh H, et al. Antibody-indocyaninconjugates for immunophotodetection of human squamous cell carcinoma in nude mice. Cancer Res1994;54(10):2643-9.
    9Ballou B, Fisher GW, Waggoner AS, Farkas DL, Reiland JM, Jaffe R, et al. Tumor labeling in vivo usingcyanine-conjugated monoclonal antibodies. Cancer Immunol Immun1995;41(4):257-63.
    10Soukos NS, Hamblin MR, Keel S, Fabian RL, Deutsch TF, Hasan T. Epidermal growth factor receptor-targetedimmunophotodiagnosis and photoimmunotherapy of oral precancer in vivo. Cancer Res2001;61(11):4490-6.
    11Rosenthal EL, Kulbersh BD, King T, Chaudhuri TR, Zinn KR. Use of fluorescent labeled anti–epidermal growthfactor receptor antibody to image head and neck squamous cell carcinoma xenografts. Mol Cancer Ther2007;6(4):1230-8.
    Ramjiawan B, Maiti P, Aftanas A, Kaplan H, Fast D, Mantsch HH, et al. Noninvasive localization of tumors byimmunofluorescence imaging using a single chain Fv fragment of a human monoclonal antibody with broad cancerspecificity. Cancer2000;89(5):1134-44.
    13Ogawa M, Kosaka N, Choyke PL, Kobayashi H. In vivo molecular imaging of cancer with a quenching near-infraredfluorescent probe using conjugates of monoclonal antibodies and indocyanine green. Cancer Res2009;69(4):1268-72.
    1Louie A. Multimodality imaging probes: design and challenges. Chem Rev2010;110(5):3146-95.
    1Rao J, Dragulescu-Andrasi A, Yao H. Fluorescence imaging in vivo: recent advances. Curr Opin Biotech2007;18(1):17-25.
    2Bremer C, Tung CH, Weissleder R. In vivo molecular target assessment of matrix metalloproteinase inhibition. NatMed2001;7(6):743-8.
    3Tung C-H, Mahmood U, Bredow S, Weissleder R. In vivo imaging of proteolytic enzyme activity using a novelmolecular reporter. Cancer Res2000;60(17):4953-8.
    4Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New strategies for fluorescent probe design in medicaldiagnostic imaging. Chem Rev2009;110(5):2620-40.
    1Wang R, Yu C, Yu F, Chen L. Molecular fluorescent probes for monitoring pH changes in living cells. Trac-TrendAnal Chem2010;29(9):1004-13.
    2Urano Y, Asanuma D, Hama Y, Koyama Y, Barrett T, Kamiya M, et al. Selective molecular imaging of viable cancercells with pH-activatable fluorescence probes. Nat Med2009;15(1):104-9.
    3Povrozin YA, Markova LI, Tatarets AL, Sidorov VI, Terpetschnig EA, Patsenker LD. Near-infrared, dual-ratiometric
    4fluorescent label for measurement of pH. Anal Biochem2009;390(2):136-40.Lee H, Akers W, Bhushan K, Bloch S, Sudlow G, Tang R, et al. Near-infrared pH-activatable fluorescent probes forimaging primary and mtastatic breast tumors. Bioconjugate Chem2011;22(4):777-84.
    5Jain RK. Barriers to drug delivery in solid tumors. Sci Am1994;271(1):58-65.
    6Goldsmith SJ. Receptor imaging: Competitive or complementary to antibody imaging? Semin Nucl Med1997;27(2):85-93.
    1Nie S. Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine-UK2010;5(1):523-8.
    2Zhang C, Liu T, Su Y, Luo S, Zhu Y, Tan X, et al. A near-infrared fluorescent heptamethine indocyanine dye with
    3preferential tumor accumulation for in vivo imaging. Biomaterials2010;31(25):6612-7.Shi C, Zhang C, Su Y, Cheng T. Cyanine dyes in optical imaging of tumours. Lancet Oncol2010;11(9):815-6.
    4Yang X, Shi C, Tong R, Qian W, Zhau HE, Wang R, et al. Near IR heptamethine cyanine dye–mediated cancerimaging. Clin Cancer Res2010;16(10):2833-44.
    5Trivedi ER, Harney AS, Olive MB, Podgorski I, Moin K, Sloane BF, et al. Chiral porphyrazine near-IR optical imagingagent exhibiting preferential tumor accumulation. P Natl Acad Sci U S A2010;107(4):1284-8.
    1Shi C, Zhang C, Su Y, Cheng T. Cyanine dyes in optical imaging of tumours. Lancet Oncol2010;11(9):815-6.
    2Yang X, Shi C, Tong R, Qian W, Zhau HE, Wang R, et al. Near IR heptamethine cyanine dye–mediated cancerimaging. Clin Cancer Res2010;16(10):2833-44.
    1Chen LB. Mitochondrial membrane potential in living cells. Annu Rev Cell Biol1988;4:155-81.
    2Zhang E, Zhang C, Su Y, Cheng T, Shi C. Newly developed strategies for multifunctional mitochondria-targeted agentsin cancer therapy. Drug Discov Today2011;16(3-4):140-6.
    1Catia Marzolini, Rommel G Tirona, Richard B Kim. Pharmacogenomics of the OATP and OAT families.Pharmacogenomics2004;5(3):273-282
    2Trivedi ER, Harney AS, Olive MB, Podgorski I, Moin K, Sloane BF, et al. Chiral porphyrazine near-IR optical imagingagent exhibiting preferential tumor accumulation. P Natl Acad Sci U S A2010;107(4):1284-8.
    3Trivedi ER, Lee S, Zong H, Blumenfeld CM, Barrett AGM, Hoffman BM. Synthesis of heteroatom substitutednaphthoporphyrazine derivatives with near-infrared absorption and emission. J Org Chem2010;75(5):1799-802.
    4Song Y, Zong H, Trivedi ER, Vesper BJ, Waters EA, Barrett AGM, et al. Synthesis and characterization of newporphyrazine-Gd(III) conjugates as multimodal MR contrast agents. Bioconjugate Chem2010;21(12):2267-75.
    1Josephson L, Kircher MF, Mahmood U, Tang Y, Weissleder R. Near-infrared fluorescent nanoparticles as combinedMR/optical imaging probes. Bioconjugate Chem2002;13(3):554-60.
    2Cai W, Chen K, Li ZB, Gambhir SS, Chen X. Dual-function probe for PET and near-infrared fluorescence imaging oftumor vasculature. J Nucl Med2007;48(11):1862-70.
    3McCann CM, Waterman P, Figueiredo JL, Aikawa E, Weissleder R, Chen JW. Combined magnetic resonance andfluorescence imaging of the living mouse brain reveals glioma response to chemotherapy. Neuroimage2009;45(2):360-9.
    1Lampidis TJ, Salet C, Moreno G, Chen LB. Effects of the mitochondrial probe rhodamine123and related analogs onthe function and viability of pulsating myocardial cells in culture. Inflamm Res1984;14(5):751-7.
    2Mojzisova H, Bonneau S, Brault D. Structural and physico-chemical determinants of the interactions of macrocyclicphotosensitizers with cells. Eur Biophys J2007;36(8):943-53.
    [1]曾紅梅,陳萬青.中國癌癥流行病學(xué)與防治研究現(xiàn)狀[J].化學(xué)進(jìn)展,2013(09):1415-1420.
    [2] Siegel R, Naishadham D, Jemal A. Cancer statistics,2013[J]. CA Cancer J Clin,2013,63(1):11-30.
    [3] Humphrey R W, Brockway-Lunardi L M, Bonk D T, et al. Opportunities andchallenges in the development of experimental drug combinations for cancer[J]. JNatl Cancer Inst,2011,103(16):1222-1226.
    [4] Ozdemir V, Williams-Jones B, Glatt S J, et al. Shifting emphasis frompharmacogenomics to theragnostics[J]. Nat Biotechnol,2006,24(8):942-946.
    [5] Zhang H, Tian M, Ignasi C, et al. Molecular image-guided theranostic andpersonalized medicine[J]. J Biomed Biotechnol,2011,2011:673697.
    [6] Qin S Y, Feng J, Rong L, et al. Theranostic GO-based nanohybrid for tumor inducedimaging and potential combinational tumor therapy[J]. Small,2014,10(3):599-608.
    [7] Bahmani B, Bacon D, Anvari B. Erythrocyte-derived photo-theranostic agents: hybridnano-vesicles containing indocyanine green for near infrared imaging and therapeuticapplications[J]. Sci Rep,2013,3:2180.
    [8] Lee G Y, Qian W P, Wang L, et al. Theranostic nanoparticles with controlled releaseof gemcitabine for targeted therapy and MRI of pancreatic cancer[J]. ACS Nano,2013,7(3):2078-2089.
    [9] Godovikova T S, Lisitskiy V A, Antonova N M, et al. Ligand-directed acid-sensitiveamidophosphate5-trifluoromethyl-2'-deoxyuridine conjugate as a potentialtheranostic agent[J]. Bioconjug Chem,2013,24(5):780-795.
    [10] Yang Z, Lee J H, Jeon H M, et al. Folate-based near-infrared fluorescent theranosticgemcitabine delivery[J]. J Am Chem Soc,2013,135(31):11657-11662.
    [11] Ahmed N, Fessi H, Elaissari A. Theranostic applications of nanoparticles in cancer[J].Drug Discov Today,2012,17(17-18):928-934.
    [12] Pan D. Theranostic nanomedicine with functional nanoarchitecture[J]. Mol Pharm,2013,10(3):781-782.
    [13] Caldorera-Moore M E, Liechty W B, Peppas N A. Responsive theranostic systems:integration of diagnostic imaging agents and responsive controlled release drugdelivery carriers[J]. Acc Chem Res,2011,44(10):1061-1070.
    [14] Alberti C. From molecular imaging in preclinical/clinical oncology to theranosticapplications in targeted tumor therapy[J]. Eur Rev Med Pharmacol Sci,2012,16(14):1925-1933.
    [15] Shen B Q, Xu K, Liu L, et al. Conjugation site modulates the in vivo stability andtherapeutic activity of antibody-drug conjugates[J]. Nat Biotechnol,2012,30(2):184-189.
    [16] Cheng Z, Al Z A, Hui J Z, et al. Multifunctional nanoparticles: cost versus benefit ofadding targeting and imaging capabilities[J]. Science,2012,338(6109):903-910.
    [17] Zhang C, Liu T, Su Y, et al. A near-infrared fluorescent heptamethine indocyaninedye with preferential tumor accumulation for in vivo imaging[J]. Biomaterials,2010,31(25):6612-6617.
    [18] Hilderbrand S A, Weissleder R. Near-infrared fluorescence: application to in vivomolecular imaging[J]. Curr Opin Chem Biol,2010,14(1):71-79.
    [19] Okuda K, Okabe Y, Kadonosono T, et al.2-Nitroimidazole-tricarbocyanine conjugateas a near-infrared fluorescent probe for in vivo imaging of tumor hypoxia[J].Bioconjug Chem,2012,23(3):324-329.
    [20] Mishra A, Behera R K, Behera P K, et al. Cyanines during the1990s: a review[J].Chem Rev,2000,100(6):1973-2012.
    [21] Stennett E M, Ciuba M A, Levitus M. Photophysical processes in single moleculeorganic fluorescent probes[J]. Chem Soc Rev,2014,43(4):1057-1075.
    [22] El-Aal R M A. Thiazoline and thiazoloxazole in synthesis of novel meso-substitutedmono-, tri-, and hepta-methine cyanine dyes[J]. Dyes and Pigments,2004,61(3):251-261.
    [23] Kobayashi H, Ogawa M, Alford R, et al. New strategies for fluorescent probe designin medical diagnostic imaging[J]. Chem Rev,2010,110(5):2620-2640.
    [24] Shershov V E, Spitsyn M A, Kuznetsova V E, et al. Near-infrared heptamethinecyanine dyes. Synthesis, spectroscopic characterization, thermal properties andphotostability[J]. Dyes and Pigments,2013,97(2):353-360.
    [25] Guo Z, Park S, Yoon J, et al. Recent progress in the development of near-infraredfluorescent probes for bioimaging applications[J]. Chem Soc Rev,2014,43(1):16-29.
    [26] Jun Yin, Younghee Kwon, Dabin Kim, Dayoung Lee, Gyoungmi Kim, Ying Hu,Ji-Hwan Ryu, and Juyoung Yoon. Cyanine-based fluorescent probe for highlyselective detection of glutathione in cell cultures and live mouse tissues[J]. J. Am.Chem. Soc.,2014,136(14):5351-5358.
    [27] Sevick-Muraca E M. Translation of near-infrared fluorescence imaging technologies:emerging clinical applications[J]. Annu Rev Med,2012,63:217-231.
    [28] Ishikawa D, Shinzawa H, Genkawa T, et al. Recent progress of near-infrared (NIR)imaging-development of novel instruments and their applicability for practicalsituations[J]. Anal Sci,2014,30(1):143-150.
    [29] Becker A, Hessenius C, Licha K, et al. Receptor-targeted optical imaging of tumorswith near-infrared fluorescent ligands[J]. Nat Biotechnol,2001,19(4):327-331.
    [30] Liu F, Deng D, Chen X, et al. Folate-polyethylene glycol conjugated near-infraredfluorescence probe with high targeting affinity and sensitivity for in vivo early tumordiagnosis[J]. Mol Imaging Biol,2010,12(6):595-607.
    [31] Kovar J L, Volcheck W, Sevick-Muraca E, et al. Characterization and performance ofa near-infrared2-deoxyglucose optical imaging agent for mouse cancer models[J].Anal Biochem,2009,384(2):254-262.
    [32] Mahounga D M, Shan L, Jie C, et al. Synthesis of a novelL-methyl-methionine-ICG-Der-02fluorescent probe for in vivo near infrared imagingof tumors[J]. Mol Imaging Biol,2012,14(6):699-707.
    [33] Xu Y, Zanganeh S, Mohammad I, et al. Targeting tumor hypoxia with2-nitroimidazole-indocyanine green dye conjugates[J]. J Biomed Opt,2013,18(6):66009.
    [34] Cai W, Shin D W, Chen K, et al. Peptide-labeled near-infrared quantum dots forimaging tumor vasculature in living subjects[J]. Nano Lett,2006,6(4):669-676.
    [35] Ogawa M, Kosaka N, Choyke P L, et al. In vivo molecular imaging of cancer with aquenching near-infrared fluorescent probe using conjugates of monoclonal antibodiesand indocyanine green[J]. Cancer Res,2009,69(4):1268-1272.
    [36] Kim M Y, Jeong S. In vitro selection of RNA aptamer and specific targeting of ErbB2in breast cancer cells[J]. Nucleic Acid Ther,2011,21(3):173-178.
    [37] Zhang C, Peng Y, Wang F, et al. A synthetic cantharidin analog for the enhancementof doxorubicin suppression of stem cell-derived aggressive sarcoma[J]. Biomaterials,2010,31(36):9535-9543.
    [38] Andreev O A, Dupuy A D, Segala M, et al. Mechanism and uses of a membranepeptide that targets tumors and other acidic tissues in vivo[J]. Proc Natl Acad Sci U SA,2007,104(19):7893-7898.
    [39] Reynolds G A, Drexhage K H. Stable heptamethine pyrylium dyes that absorb in theinfrared[J]. J Org Chem,1977,42(5):885-888.
    [40] Zhang Z, Achilefu S. Synthesis and evaluation of polyhydroxylated near-infraredcarbocyanine molecular probes[J]. Org Lett,2004,6(12):2067-2070.
    [41] Henary M, Pannu V, Owens E A, et al. Near infrared active heptacyanine dyes withunique cancer-imaging and cytotoxic properties[J]. Bioorg Med Chem Lett,2012,22(2):1242-1246.
    [42] Sundholm D, Taubert S, Pichierri F. Calculation of absorption and emission spectra of[n]cycloparaphenylenes: the reason for the large Stokes shift[J]. Phys Chem ChemPhys,2010,12(11):2751-2757.
    [43] James M L, Gambhir S S. A molecular imaging primer: modalities, imaging agents,and applications[J]. Physiol Rev,2012,92(2):897-965.
    [44] Pierce M C, Javier D J, Richards-Kortum R. Optical contrast agents and imagingsystems for detection and diagnosis of cancer[J]. Int J Cancer,2008,123(9):1979-1990.
    [45] Hilderbrand S A, Weissleder R. Near-infrared fluorescence: application to in vivomolecular imaging[J]. Curr Opin Chem Biol,2010,14(1):71-79.
    [46]王栩,趙謙,孫娟,等.細(xì)胞內(nèi)活性小分子近紅外熒光成像探針[J].化學(xué)進(jìn)展,2013(Z1):179-191.
    [47] Chen X Y, Peng X J, Cui A J, et al. Photostabilities of novel heptamethine3H-indolenine cyanine dyes with different N-substituents[J]. J Photoch PhotobioA-Chemistry,2006,181(1):79-85.
    [48] Song F, Peng X, Lu E, et al. Syntheses, spectral properties and photostabilities ofnovel water-soluble near-infrared cyanine dyes[J]. J Photoch Photobio A-Chemistry,2004,168(1–2):53-57.
    [49] Kovalska V B, Volkova K D, Losytskyy M Y, et al.6,6'-Disubstituted benzothiazoletrimethine cyanines--new fluorescent dyes for DNA detection[J]. Spectrochim Acta AMol Biomol Spectrosc,2006,65(2):271-277.
    [50] Strekowski L, Mason C J, Lee H, et al. Synthesis of water-soluble near-infraredcyanine dyes functionalized with [(succinimido)oxy]carbonyl group[J]. J HeterocyclicChem.,2003,40(5):913-916.
    [51] Kim J S, Kodagahally R, Strekowski L, et al. A study of intramolecular H-complexesof novel bis(heptamethine cyanine) dyes[J]. Talanta,2005,67(5):947-954.
    [52] Choi H S, Gibbs S L, Lee J H, et al. Targeted zwitterionic near-infrared fluorophoresfor improved optical imaging[J]. Nat. Biotech.,2013,31(2):148-153.
    [53] Luo S, Zhang E, Su Y, et al. A review of NIR dyes in cancer targeting and imaging[J].Biomaterials,2011,32(29):7127-7138.
    [54] Zhang E, Luo S, Tan X, et al. Mechanistic study of IR-780dye as a potential tumortargeting and drug delivery agent[J]. Biomaterials,2014,35(2):771-778.
    [55] Panigrahi M, Dash S, Patel S, et al. Syntheses of cyanines: a review[J]. Tetrahedron,2012,68(3):781-805.
    [56] Guo Q, Luo S, Qi Q, et al. Peliminary structure-activity relationship study ofheptamethine indocyanine dyes for tumor-targeted imaging[J]. J Innov Opt Heal Sci,2013,6(13500031).
    [57] Devos T, Thiessen S, Cuyle P J, et al. Long-term follow-up in a patient with thedermato-neuro syndrome treated with high-dose melphalan, thalidomide, andintravenous immunoglobulins for more than7years[J]. Ann Hematol,2014.
    [58] Luo Z, Chang J, Guo Y, et al. Continuous infusion of5-FU with split-dose cisplatin:an effective treatment for advanced squamous-cell carcinoma of the head and neck[J].Clin Invest Med,2011,34(1): E8-E13.
    [59] Tewey K M, Rowe T C, Yang L, et al. Adriamycin-induced DNA damage mediatedby mammalian DNA topoisomerase II[J]. Science,1984,226(4673):466-468.
    [60] Low P S, Kularatne S A. Folate-targeted therapeutic and imaging agents for cancer[J].Curr Opin Chem Biol,2009,13(3):256-262.
    [61] Siegel B A, Dehdashti F, Mutch D G, et al. Evaluation of111In-DTPA-folate as areceptor-targeted diagnostic agent for ovarian cancer: initial clinical results[J]. J NuclMed,2003,44(5):700-707.
    [62] Muller C, Hohn A, Schubiger P A, et al. Preclinical evaluation of novelorganometallic99mTc-folate and99mTc-pteroate radiotracers for folatereceptor-positive tumour targeting[J]. Eur J Nucl Med Mol Imaging,2006,33(9):1007-1016.
    [63] Eiber M, Takei T, Souvatzoglou M, Matthias Eiber, Toshiki Takei, Markus Schwaiger,and Ambros J. Beer. Performance of whole-body integrated18F-FDG PET/MR incomparison to PET/CT for evaluation of malignant bone lesions[J]. J Nucl Med,2014,55(2):191-197.
    [64] Hashida M, Nishikawa M, Yamashita F, et al. Cell-specific delivery of genes withglycosylated carriers[J]. Adv Drug Deliv Rev,2001,52(3):187-196.
    [65] Junutula J R, Raab H, Clark S, et al. Site-specific conjugation of a cytotoxic drug toan antibody improves the therapeutic index[J]. Nat Biotechnol,2008,26(8):925-932.
    [66] Senter P D, Sievers E L. The discovery and development of brentuximab vedotin foruse in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma[J].Nat Biotechnol,2012,30(7):631-637.
    [67] Junutula J R, Flagella K M, Graham R A, et al. Engineered thio-trastuzumab-DM1conjugate with an improved therapeutic index to target human epidermal growthfactor receptor2-positive breast cancer[J]. Clin Cancer Res,2010,16(19):4769-4778.
    [68] Senter P D. Potent antibody drug conjugates for cancer therapy[J]. Curr Opin ChemBiol,2009,13(3):235-244.
    [69] Wiseman G A, Witzig T E. Yttrium-90(90Y) ibritumomab tiuxetan (Zevalin) induceslong-term durable responses in patients with relapsed or refractory B-Cellnon-Hodgkin's lymphoma[J]. Cancer Biother Radiopharm,2005,20(2):185-188.
    [70] Kaminski M S, Tuck M, Estes J, et al.131I-tositumomab therapy as initial treatmentfor follicular lymphoma[J]. N Engl J Med,2005,352(5):441-449.
    [71] Sugahara K N, Teesalu T, Karmali P P, et al. Coadministration of a tumor-penetratingpeptide enhances the efficacy of cancer drugs[J]. Science,2010,328(5981):1031-1035.
    [72] Morales A R, Yanez C O, Zhang Y, et al. Small molecule fluorophore and copolymerRGD peptide conjugates for ex vivo two-photon fluorescence tumor vasculatureimaging[J]. Biomaterials,2012,33(33):8477-8485.
    [73] Shi J, Xiao Z, Kamaly N, et al. Self-assembled targeted nanoparticles: evolution oftechnologies and bench to bedside translation[J]. Acc Chem Res,2011,44(10):1123-1134.
    [74] Mccarthy N. Running a MUC1[J]. Nat.Rev. Cancer,2012,12(5):317.
    [75] Moore A, Medarova Z, Potthast A, et al. In vivo targeting of underglycosylatedMUC-1tumor antigen using a multimodal imaging probe[J]. Cancer Res,2004,64(5):1821-1827.
    [76] Ray P, Viles K D, Soule E E, et al. Application of aptamers for targetedtherapeutics[J]. Arch Immunol Ther Ex,2013,61(4):255-271.
    [77] Famulok M, Hartig J S, Mayer G. Functional aptamers and aptazymes inbiotechnology, diagnostics, and therapy[J]. Chem.Rev.,2007,107(9):3715-3743.
    [78] Teicher B A, Chari R V. Antibody conjugate therapeutics: challenges and potential[J].Clin Cancer Res,2011,17(20):6389-6397.
    [79] Vasir J K, Reddy M K, Labhasetwar V D. Nanosystems in drug targeting:Opportunities and challenges[J]. Curr Nanosci,2005,1(1):47-64.
    [80] Anderson W M, Delinck D L, Benninger L, et al. Cytotoxic effect of thiacarbocyaninedyes on human colon carcinoma cells and inhibition of bovine heart mitochondrialNADH-ubiquinone reductase activity via a rotenone-type mechanism by two of thedyes[J]. Biochem Pharmacol,1993,45(3):691-696.
    [81] Krieg M, Bilitz J M. Structurally modified trimethine thiacarbocyanine dyes. Effect ofN-alkyl substituents on antineoplastic behavior[J]. Biochem Pharmacol,1996,51(11):1461-1467.
    [82] Youssif B G, Okuda K, Kadonosono T, et al. Development of a hypoxia-selectivenear-infrared fluorescent probe for non-invasive tumor imaging[J]. Chem Pharm Bull(Tokyo),2012,60(3):402-407.
    [83] Oh M, Tanaka T, Kobayashi M, et al. Radio-copper-labeled Cu-ATSM: an indicatorof quiescent but clonogenic cells under mild hypoxia in a Lewis lung carcinomamodel[J]. Nucl Med Biol,2009,36(4):419-426.
    [84]王理偉,王雷,李寧.臨床腫瘤基因組學(xué)與腫瘤個(gè)體化治療[J].臨床腫瘤學(xué)雜志,2010(06):481-486.
    [85]府偉靈,黃慶.腫瘤個(gè)體化治療[J].重慶醫(yī)學(xué),2008(03):225-226.
    [86] Xiong R, Soenen S J, Braeckmans K, et al. Towards theranostic multicompartmentmicrocapsules: in-situ diagnostics and laser-induced treatment[J]. Theranostics,2013,3(3):141-151.
    [87] Kim T H, Lee S, Chen X. Nanotheranostics for personalized medicine[J]. Expert RevMol Diagn,2013,13(3):257-269.
    [88] Haubold M, Wiemer M, Gessner T, et al. Integrated smart systems for theranosticapplications[J]. Biomed Tech (Berl),2013.
    [1] Jemal A, Siegel R, Xu J, Ward E. Cancer statistics,2010. CA-Cancer J Clin2010;60(5):277-300.
    [2] Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics,2000. CA-Cancer JClin2000;50(1):7-33.
    [3] Fass L. Imaging and cancer: a review. Mol Oncol2008;2(2):115-52.
    [4] Choy G, Choyke P, Libutti SK. Current advances in molecular imaging: noninvasivein vivo bioluminescent and fluorescent optical imaging in cancer research. MolImaging2003;2(4):303-12.
    [5] Hilderbrand SA, Weissleder R. Near-infrared fluorescence: application to in vivomolecular imaging. Curr Opin Chem Biol2010;14(1):71-9.
    [6] Nurunnabi M, Cho KJ, Choi JS, Huh KM, Lee Y-k. Targeted near-IR QDs-loadedmicelles for cancer therapy and imaging. Biomaterials2010;31(20):5436-44.
    [7] Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranosticnanoparticles. Adv Drug Deliver Rev2010;62(11):1052-63.
    [8] Nel A, Xia T, M dler L, Li N. Toxic potential of materials at the nanolevel. Science2006;311(5761):622-7.
    [9] Hoshino A, Hanada S, Yamamoto K. Toxicity of nanocrystal quantum dots: therelevance of surface modifications. Arch Toxicol2011:1-14.
    [10] Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD. Cellularuptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surfaceeffects. Small2009;5(6):701-8.
    [11] Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dotsversus organic dyes as fluorescent labels. Nat Methods2008;5(9):763-75.
    [12] Escobedo JO, Rusin O, Lim S, Strongin RM. NIR dyes for bioimaging applications.Curr Opin Chem Biol2010;14(1):64-70.
    [13] Gon alves MST. Fluorescent labeling of biomolecules with organic probes. ChemRev2008;109(1):190-212.
    [14] Mishra A, Behera RK, Behera PK, Mishra BK, Behera GB. Cyanines during the1990s: a review. Chem Rev2000;100(6):1973-2012.
    [15] Ballou B, Ernst LA, Waggoner AS. Fluorescence imaging of tumors in vivo. CurrMed Chem2005;12(7):795-805.
    [16] Lavis LD, Raines RT. Bright ideas for chemical biology. ACS Chem Biol2008;3(3):142-55.
    [17] Kusano M, Tajima Y, Yamazaki K, Kato M, Watanabe M, Miwa M. Sentinel nodemapping guided by indocyanine green fluorescence imaging: a new method forsentinel node navigation surgery in gastrointestinal cancer. Digest Surg2008;25(2):103-8.
    [18] Ishizawa T, Fukushima N, Shibahara J, Masuda K, Tamura S, Aoki T, et al. Real-timeidentification of liver cancers by using indocyanine green fluorescent imaging.Cancer2009;115(11):2491-504.
    [19] Haughland RP. Molecular probes. Handbook of fluorescent probes and researchchemicals,9th ed. Molecular Probes Inc, Eugene, OR,2002.
    [20] Górecki T, Patonay G, Strekowski L, Chin R, Salazar N. Synthesis of novelnear-infrared cyanine dyes for metal ion determination. J Heterocyclic Chem1996;33(6):1871-6.
    [21] Patonay G, Antoine MD, Devanathan S, Strekowski L. Near-infrared probe fordetermination of solvent hydrophobicity. Appl Spectrosc1991;45(3):457-61.
    [22] Strekowski L. Heterocyclic polymethine fyes: dynthesis, properties and applications.Springer, Berlin/Heidelberg,2008
    [23] Chen X, Peng X, Cui A, Wang B, Wang L, Zhang R. Photostabilities of novelheptamethine3H-indolenine cyanine dyes with different N-substituents. J PhotochPhotobio A2006;181(1):79-85.
    [24] Song F, Peng X, Lu E, Zhang R, Chen X, Song B. Syntheses, spectral properties andphotostabilities of novel water-soluble near-infrared cyanine dyes. J Photoch PhotobioA2004;168(1-2):53-7.
    [25] Kovalska VB, Volkova KD, Losytskyy MY, Tolmachev OI, Balanda AO, YarmolukSM.6,6'-Disubstituted benzothiazole trimethine cyanines-new fluorescent dyes forDNA detection. Spectrochim Acta A Mol Biomol Spectrosc2006;65(2):271-7.
    [26] Yarmoluk SM, Kovalska VB, Lukashov SS, Slominskii YL. Interaction of cyaninedyes with nucleic acids. XII.[beta]-substituted carbocyanines as possible fluorescentprobes for nucleic acids detection. Bioorg Med Chem Lett1999;9(12):1677-8.
    [27] Peng X, Song F, Lu E, Wang Y, Zhou W, Fan J, et al. Heptamethine cyanine dyeswith a large stokes shift and strong fluorescence: a paradigm for excited-stateintramolecular charge transfer. J Am Chem Soc2005;127(12):4170-1.
    [28] Zhou LC, Zhao GJ, Liu JF, Han KL, Wu YK, Peng XJ, et al. The charge transfermechanism and spectral properties of a near-infrared heptamethine cyanine dye inalcoholic and aprotic solvents. J Photoch Photobio A2007;187(2-3):305-10.
    [29] Kim JS, Kodagahally R, Strekowski L, Patonay G. A study of intramolecularH-complexes of novel bis(heptamethine cyanine) dyes. Talanta2005;67(5):947-54.
    [30] Gragg JL. Synthesis of near-infrared heptamethine cyanine dyes. Chemistry Theses.2010:28.
    [31] Volkova KD, Kovalska VB, Tatarets AL, Patsenker LD.KryvorotenkoDV,Yarmoluk SM. Spectroscopic study of squaraines as protein-sensitive fluorescentdyes. Dyes Pigments2007;72(3):285-92.
    [32] Gayathri Devi D, Cibin TR, Ramaiah D, Abraham A.Bis(3,5-diiodo-2,4,6-trihydroxyphenyl) squaraine: a novel candidate in photodynamictherapy for skin cancer models in vivo. J Photoch Photobio B2008;92(3):153-9.
    [33] Umezawa K, Citterio D, Suzuki K. Water-soluble NIR fluorescent probes based onsquaraine and their application for protein labeling. Anal Sci2008;24(2):213-7.
    [34] Nakazumi H, Ohta T, Etoh H, Uno T, Colyer CL, Hyodo Y, et al. Near-infraredluminescent bis-squaraine dyes linked by a thiophene or pyrene spacer fornoncovalent protein labeling. Synthetic Met2005;153(1-3):33-6.
    [35] Gassensmith JJ, Baumes JM, Smith BD. Discovery and early development ofsquaraine rotaxanes. Chem Commun2009;(42):6329-38.
    [36] de la Torre G, Claessens CG, Torres T. Phthalocyanines: old dyes, new materials.putting color in nanotechnology. Chem Commun2007;(20):2000-15.
    [37] de la Torre G, Vázquez P, Agulló-López F, Torres T. Role of structural cactors in thenonlinear optical properties of phthalocyanines and related compounds. Chem Rev2004;104(9):3723-50.
    [38] Tanaka Y, Shin J-Y, Osuka A. Facile synthesis of largemeso-pentafluorophenyl-substituted expanded porphyrins. Eur J Org Chem2008;2008(8):1341-9.
    [39] Srinivasan A, Ishizuka T, Osuka A, Furuta H. Doubly N-confused hexaphyrin: anovel aromatic expanded porphyrin that complexes bis-metals in the core. J AmChem Soc2003;125(4):878-9.
    [40] Xie YS, Yamaguchi K, Toganoh M, Uno H, Suzuki M, Mori S, et al. TriplyN-confused hexaphyrins: near-infrared luminescent dyes with a triangular shape.Angew Chem Int Edit2009;48(30):5496-9.
    [41] Kuimova MK, Collins HA, Balaz M, Dahlstedt E, Levitt JA, Sergent N, et al.Photophysical properties and intracellular imaging of water-soluble porphyrin dimersfor two-photon excited photodynamic therapy. Org Biomol Chem2009;7(5):889-96.
    [42] Nishiyama N, Jang W-D, Kataoka K. Supramolecular nanocarriers integrated withdendrimers encapsulating photosensitizers for effective photodynamic therapy andphotochemical gene delivery. New J Chem2007;31(7):1074-82.
    [43] Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, et al. Imaging andphotodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev2010;110(5):2795-838.
    [44] Li W-S, Aida T. Dendrimer porphyrins and phthalocyanines. Chem Rev2009;109(11):6047-76.
    [45] Brown SB, Brown EA, Walker I. The present and future role of photodynamictherapy in cancer treatment. Lancet Oncol2004;5(8):497-508.
    [46] Killoran J, McDonnell SO, Gallagher JF, O'Shea DF. A substituted BF2-chelatedtetraarylazadipyrromethene as an intrinsic dual chemosensor in the650-850nmspectral range. New J Chem2008;32(3):483-9.
    [47] Palma A, Tasior M, Frimannsson DO, Vu TT, Méallet-Renault R, O’Shea DF. Newon-bead near-infrared fluorophores and fluorescent sensor constructs. Org Lett2009;11(16):3638-41.
    [48] Rickert EL, Oriana S, Hartman-Frey C, Long X, Webb TT, Nephew KP, et al.Synthesis and characterization of fluorescent4-hydroxytamoxifen conjugates withunique antiestrogenic properties. Bioconjugate Chem2010;21(5):903-10.
    [49] Donuru VR, Zhu S, Green S, Liu H. Near-infrared emissive BODIPY polymeric andcopolymeric dyes. Polymer2010;51(23):5359-68.
    [50] Loudet A, Burgess K. BODIPY dyes and their derivatives: syntheses andspectroscopic properties. Chem Rev2007;107(11):4891-932.
    [51] Rurack K, Kollmannsberger M, Daub J. A highly efficient sensor molecule emittingin the near infrared (NIR):3,5-distyryl-8-(p-dimethylaminophenyl)difluoroboradiaza-s-indacene. New J Chem2001;25(2):289-92.
    [52] Umezawa K, Matsui A, Nakamura Y, Citterio D, Suzuki K. Bright, color-tunablefluorescent dyes in the vis/NIR region: establishment of new “tailor-made” multicolorfluorophores based on borondipyrromethene. Chem–Eur J2009;15(5):1096-106.
    [53] Killoran J, Allen L, Gallagher JF, Gallagher WM, O'Shea DF. Synthesis of BF2chelates of tetraarylazadipyrromethenes and evidence for their photodynamictherapeutic behavior. Chem Commun2002;(17):1862-3.
    [54] Loudet A, Bandichhor R, Burgess K, Palma A, McDonnell SO, Hall MJ, et al.B,O-chelated azadipyrromethenes as near-IR probes. Org Lett2008;10(21):4771-4.
    [55] Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeteddrug delivery based on EPR-effect. Eur J Pharm Biopharm2009;71(3):409-19.
    [56] Liu T, Wu LY, Hopkins MR, Choi JK, Berkman CE. A targeted low molecular weightnear-infrared fluorescent probe for prostate cancer. Bioorg Med Chem Lett2010;20(23):7124-6.
    [57] Chen Y, Dhara S, Banerjee SR, Byun Y, Pullambhatla M, Mease RC, et al. A lowmolecular weight PSMA-based fluorescent imaging agent for cancer. Biochem BiophRes Co2009;390(3):624-9.
    [58] Levi J, Cheng Z, Gheysens O, Patel M, Chan CT, Wang Y, et al. Fluorescent fructosederivatives for imaging breast cancer cells. Bioconjugate Chem2007;18(3):628-34.
    [59] Dasari M, Lee S, Sy J, Kim D, Lee S, Brown M, et al. Hoechst-IR: An imaging agentthat detects necrotic tissue in vivo by binding extracellular DNA. Org Lett2010;12(15):3300-3.
    [60] Tung C-H, Lin Y, Moon WK, Weissleder R. A receptor-targeted near-infraredfluorescence probe for in vivo tumor imaging. ChemBioChem2002;3(8):784-6.
    [61] Wang W, Ke S, Kwon S, Yallampalli S, Cameron AG, Adams KE, et al. A newoptical and nuclear dual-labeled imaging agent targeting interleukin11receptoralpha-chain. Bioconjugate Chem2007;18(2):397-402.
    [62] Jin ZH, Josserand V, Foillard S, Boturyn D, Dumy P, Favrot MC, et al. In vivo opticalimaging of integrin αV-β3in mice using multivalent or monovalent cRGD targetingvectors. Mol Cancer2007;6:41.
    [63] Carpenter RD, Andrei M, Aina OH, Lau EY, Lightstone FC, Liu R, et al. Selectivelytargeting T-and B-cell lymphomas: a benzothiazole antagonist of α4β1integrin. JMed Chem2008;52(1):14-9.
    [64] Garanger E, Boturyn D, Jin Z, Dumy P, Favrot MC, Coll JL. New multifunctionalmolecular conjugate vector for targeting, imaging, and therapy of tumors. Mol Ther2005;12(6):1168-75.
    [65] Achilefu S, Dorshow RB, Bugaj JE, Rajagopalan R. Novel receptor-targetedfluorescent contrast agents for in vivo tumor imaging. Invest Radiol2000;35(8):479-85.
    [66] Becker A, Hessenius C, Licha K, Ebert B, Sukowski U, Semmler W, et al.Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands.Nat Biotechnol2001;19(4):327-31.
    [67] Pham W, Medarova Z, Moore A. Synthesis and application of a water-solublenear-infrared dye for cancer detection using optical imaging. Bioconjugate Chem2005;16(3):735-40.
    [68] Citrin D, Lee AK, Scott T, Sproull M, Ménard C, Tofilon PJ, et al. In vivo tumorimaging in mice with near-infrared labeled endostatin. Mol Cancer Ther2004;3(4):481-8.
    [69] Ke S, Wen X, Gurfinkel M, Charnsangavej C, Wallace S, Sevick-Muraca EM, et al.Near-infrared optical imaging of epidermal growth factor receptor in breast cancerxenografts. Cancer Res2003;63(22):7870-5.
    [70] Becker A, Riefke B, Ebert B, Sukowski U, Rinneberg H, Semmler W, et al.Macromolecular contrast agents for optical imaging of tumors: comparison ofindotricarbocyanine-labeled human serum albumin and transferrin. PhotochemPhotobiol2000;72(2):234-41.
    [71] Petrovsky A, Schellenberger E, Josephson L, Weissleder R, Bogdanov A.Near-infrared fluorescent imaging of tumor apoptosis. Cancer Res2003;63(8):1936-42.
    [72] Folli S, Westermann P, Braichotte D, Pelegrin A, Wagnieres G, van den Bergh H, etal. Antibody-indocyanin conjugates for immunophotodetection of human squamouscell carcinoma in nude mice. Cancer Res1994;54(10):2643-9.
    [73] Ballou B, Fisher GW, Waggoner AS, Farkas DL, Reiland JM, Jaffe R, et al. Tumorlabeling in vivo using cyanine-conjugated monoclonal antibodies. Cancer ImmunolImmun1995;41(4):257-63.
    [74] Soukos NS, Hamblin MR, Keel S, Fabian RL, Deutsch TF, Hasan T. Epidermalgrowth factor receptor-targeted immunophotodiagnosis and photoimmunotherapy oforal precancer in vivo. Cancer Res2001;61(11):4490-6.
    [75] Rosenthal EL, Kulbersh BD, King T, Chaudhuri TR, Zinn KR. Use of fluorescentlabeled anti–epidermal growth factor receptor antibody to image head and necksquamous cell carcinoma xenografts. Mol Cancer Ther2007;6(4):1230-8.
    [76] Ramjiawan B, Maiti P, Aftanas A, Kaplan H, Fast D, Mantsch HH, et al. Noninvasivelocalization of tumors by immunofluorescence imaging using a single chain Fvfragment of a human monoclonal antibody with broad cancer specificity. Cancer2000;89(5):1134-44.
    [77] Ogawa M, Kosaka N, Choyke PL, Kobayashi H. In vivo molecular imaging of cancerwith a quenching near-infrared fluorescent probe using conjugates of monoclonalantibodies and indocyanine green. Cancer Res2009;69(4):1268-72.
    [78] Louie A. Multimodality imaging probes: design and challenges. Chem Rev2010;110(5):3146-95.
    [79] He X, Chen J, Wang K, Qin D, Tan W. Preparation of luminescent Cy5dopedcore-shell SFNPs and its application as a near-infrared fluorescent marker. Talanta2007;72(4):1519-26.
    [80] Lee CH, Cheng SH, Wang YJ, Chen YC, Chen NT, Souris J, et al. Near-infraredmesoporous Silica nanoparticles for optical imaging: characterization and in vivobiodistribution. Adv Funct Mater2009;19(2):215-22.
    [81] He X, Wu X, Wang K, Shi B, Hai L. Methylene blue-encapsulatedphosphonate-terminated silica nanoparticles for simultaneous in vivo imaging andphotodynamic therapy. Biomaterials2009;30(29):5601-9.
    [82] Bendsoe N, Persson L, Johansson A, Axelsson J, Svensson J, Grafe S, et al.Fluorescence monitoring of a topically applied liposomal Temoporfin formulation andphotodynamic therapy of nonpigmented skin malignancies. J Environ Pathol ToxicolOncol2007;26(2):117-26.
    [83] Derycke ASL, Kamuhabwa A, Gijsens A, Roskams T, De Vos D, Kasran A, et al.Transferrin-conjugated liposome targeting of photosensitizer AlPcS4to rat bladdercarcinoma cells. J Natl Cancer I2004;96(21):1620-30.
    [84] Meerovich IG, Smirnova ZS, Oborotova NA, Luk’yanets EA, Meerovich GA,Derkacheva VM, et al. Hydroxyaluminium tetra-3-phenylthiophthalocyanine is a neweffective photosensitizer for photodynamic therapy and fluorescent diagnosis. B ExpBiol Med+2005;139(4):427-30.
    [85] Rahmanzadeh R, Rai P, Celli JP, Rizvi I, Baron-Luhr B, Gerdes J, et al. Ki-67as amolecular target for therapy in an in vitro three-dimensional model for ovarian cancer.Cancer Res2010;70(22):9234-42.
    [86] Lee S, Ryu JH, Park K, Lee A, Lee SY, Youn IC, et al. Polymeric nanoparticle-basedactivatable near-infrared nanosensor for protease determination in vivo. Nano Lett2009;9(12):4412-6.
    [87] Kim K, Kim JH, Park H, Kim YS, Park K, Nam H, et al. Tumor-homingmultifunctional nanoparticles for cancer theragnosis: Simultaneous diagnosis, drugdelivery, and therapeutic monitoring. J Control Release2010;146(2):219-27.
    [88] Masotti A, Vicennati P, Boschi F, Calderan L, Sbarbati A, Ortaggi G. A novelnear-infrared indocyanine dye polyethylenimine conjugate allows DNA deliveryimaging in vivo. Bioconjugate Chem2008;19(5):983-7.
    [89] Ghoroghchian PP, Frail PR, Susumu K, Blessington D, Brannan AK, Chance B,Therien MJ, et al. Near-infrared-emissive polymersomes: self-assembled soft matterfor in vivo optical imaging. P Natl Acad Sci USA2005;102:2922-7.
    [90] Alt nog lu EI, Russin TJ, Kaiser JM, Barth BM, Eklund PC, Kester M, et al.Near-infrared emitting cluorophore-doped calcium phosphate nanoparticles for invivo imaging of human breast cancer. ACS Nano2008;2(10):2075-84.
    [91] Rao J. Shedding light on tumors using nanoparticles. ACS Nano2008;2(10):1984-6.
    [92] Backer MV, Gaynutdinov TI, Patel V, Bandyopadhyaya AK, Thirumamagal BTS,Tjarks W, et al. Vascular endothelial growth factor selectively targets boronateddendrimers to tumor vasculature. Mol Cancer Ther2005;4(9):1423-9.
    [93] Song L, Li H, Sunar U, Chen J, Corbin I, Yodh AG, et al.Naphthalocyanine-reconstituted LDL nanoparticles for in vivo cancer imaging andtreatment. Int J Nanomedicine2007;2(4):767-74.
    [94] Zheng G, Li H, Yang K, Blessington D, Licha K, Lund-Katz S, et al. Tricarbocyaninecholesteryl laurates labeled LDL: new near infrared fluorescent probes (NIRFs) formonitoring tumors and gene therapy of familial hypercholesterolemia. Bioorg MedChem Lett2002;12(11):1485-8.
    [95] Li H, Zhang Z, Blessington D, Nelson DS, Zhou R, Lund-Katz S, et al. Carbocyaninelabeled LDL for optical imaging of tumors1. Acad Radiol2004;11(6):669-77.
    [96] Chen J, Corbin IR, Li H, Cao W, Glickson JD, Zheng G. Ligand conjugatedlow-density lipoprotein nanoparticles for enhanced optical cancer imaging in vivo. JAm Chem Soc2007;129(18):5798-9.
    [97] Rao J, Dragulescu-Andrasi A, Yao H. Fluorescence imaging in vivo: recent advances.Curr Opin Biotech2007;18(1):17-25.
    [98] Bremer C, Tung CH, Weissleder R. In vivo molecular target assessment of matrixmetalloproteinase inhibition. Nat Med2001;7(6):743-8.
    [99] Tung C-H, Mahmood U, Bredow S, Weissleder R. In vivo imaging of proteolyticenzyme activity using a novel molecular reporter. Cancer Res2000;60(17):4953-8.
    [100] Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New strategies forfluorescent probe design in medical diagnostic imaging. Chem Rev2009;110(5):2620-40.
    [101] Wang R, Yu C, Yu F, Chen L. Molecular fluorescent probes for monitoring pHchanges in living cells. Trac-Trend Anal Chem2010;29(9):1004-13.
    [102] Urano Y, Asanuma D, Hama Y, Koyama Y, Barrett T, Kamiya M, et al. Selectivemolecular imaging of viable cancer cells with pH-activatable fluorescence probes. NatMed2009;15(1):104-9.
    [103] Povrozin YA, Markova LI, Tatarets AL, Sidorov VI, Terpetschnig EA, Patsenker LD.Near-infrared, dual-ratiometric fluorescent label for measurement of pH. AnalBiochem2009;390(2):136-40.
    [104] Lee H, Akers W, Bhushan K, Bloch S, Sudlow G, Tang R, et al. Near-infraredpH-activatable fluorescent probes for imaging primary and mtastatic breast tumors.Bioconjugate Chem2011;22(4):777-84.
    [105] Jain RK. Barriers to drug delivery in solid tumors. Sci Am1994;271(1):58-65.
    [106] Goldsmith SJ. Receptor imaging: Competitive or complementary to antibody imaging?Semin Nucl Med1997;27(2):85-93.
    [107] Nie S. Understanding and overcoming major barriers in cancer nanomedicine.Nanomedicine-UK2010;5(1):523-8.
    [108] Zhang C, Liu T, Su Y, Luo S, Zhu Y, Tan X, et al. A near-infrared fluorescentheptamethine indocyanine dye with preferential tumor accumulation for in vivoimaging. Biomaterials2010;31(25):6612-7.
    [109] Shi C, Zhang C, Su Y, Cheng T. Cyanine dyes in optical imaging of tumours. LancetOncol2010;11(9):815-6.
    [110] Yang X, Shi C, Tong R, Qian W, Zhau HE, Wang R, et al. Near IR heptamethinecyanine dye–mediated cancer imaging. Clin Cancer Res2010;16(10):2833-44.
    [111] Trivedi ER, Harney AS, Olive MB, Podgorski I, Moin K, Sloane BF, et al. Chiralporphyrazine near-IR optical imaging agent exhibiting preferential tumoraccumulation. P Natl Acad Sci U S A2010;107(4):1284-8.
    [112] Chen LB. Mitochondrial membrane potential in living cells. Annu Rev Cell Biol1988;4:155-81.
    [113] Zhang E, Zhang C, Su Y, Cheng T, Shi C. Newly developed strategies formultifunctional mitochondria-targeted agents in cancer therapy. Drug Discov Today2011;16(3-4):140-6.
    [114] Catia Marzolini, Rommel G Tirona, Richard B Kim. Pharmacogenomics of the OATPand OAT families. Pharmacogenomics2004;5(3):273-282
    [115] Trivedi ER, Lee S, Zong H, Blumenfeld CM, Barrett AGM, Hoffman BM. Synthesisof heteroatom substituted naphthoporphyrazine derivatives with near-infraredabsorption and emission. J Org Chem2010;75(5):1799-802.
    [116] Song Y, Zong H, Trivedi ER, Vesper BJ, Waters EA, Barrett AGM, et al. Synthesisand characterization of new porphyrazine-Gd(III) conjugates as multimodal MRcontrast agents. Bioconjugate Chem2010;21(12):2267-75.
    [117] Josephson L, Kircher MF, Mahmood U, Tang Y, Weissleder R. Near-infraredfluorescent nanoparticles as combined MR/optical imaging probes. BioconjugateChem2002;13(3):554-60.
    [118] Cai W, Chen K, Li ZB, Gambhir SS, Chen X. Dual-function probe for PET andnear-infrared fluorescence imaging of tumor vasculature. J Nucl Med2007;48(11):1862-70.
    [119] McCann CM, Waterman P, Figueiredo JL, Aikawa E, Weissleder R, Chen JW.Combined magnetic resonance and fluorescence imaging of the living mouse brainreveals glioma response to chemotherapy. Neuroimage2009;45(2):360-9.
    [120] Lampidis TJ, Salet C, Moreno G, Chen LB. Effects of the mitochondrial proberhodamine123and related analogs on the function and viability of pulsatingmyocardial cells in culture. Inflamm Res1984;14(5):751-7.
    [121] Mojzisova H, Bonneau S, Brault D. Structural and physico-chemical determinants ofthe interactions of macrocyclic photosensitizers with cells. Eur Biophys J2007;36(8):943-53.


  本文關(guān)鍵詞:七甲川花菁類熒光小分子IR-780衍生物的合成、鑒定及其用于腫瘤靶向顯影與治療的實(shí)驗(yàn)研究,由筆耕文化傳播整理發(fā)布。



本文編號(hào):174768

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/zlx/174768.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶8a3ec***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com
亚洲欧美日韩另类第一页| 免费黄片视频美女一区| 欧美成人精品国产成人综合| 国产日韩精品激情在线观看| 中文字幕一区二区免费| 丝袜破了有美女肉体免费观看| 婷婷激情五月天丁香社区| 免费黄片视频美女一区| 欧美性高清一区二区三区视频| 国产精品伦一区二区三区在线| 激情少妇一区二区三区| 国产亚洲精品久久99| 在线免费观看黄色美女| 国产熟女一区二区三区四区| 亚洲成人久久精品国产| 日本不卡视频在线观看| 国产日产欧美精品视频| 日韩18一区二区三区| 国产又粗又长又大的视频| 国产在线一区二区免费| 高清在线精品一区二区| 91精品国自产拍老熟女露脸| 日本丁香婷婷欧美激情| 亚洲视频在线观看你懂的| 欧美日韩免费黄片观看| 欧美成人黄色一区二区三区| 日韩日韩欧美国产精品| 日本人妻精品中文字幕不卡乱码| 中文字幕精品人妻一区| 黄男女激情一区二区三区| 久久久免费精品人妻一区二区三区 | 国产精品视频久久一区| 又黄又硬又爽又色的视频| 欧美精品女同一区二区| 精品国产一区二区欧美| 日韩中文字幕视频在线高清版| 欧美日韩国产免费看黄片| 精品少妇一区二区三区四区| 日韩精品视频高清在线观看| 欧美精品在线播放一区二区| 欧美精品二区中文乱码字幕高清|