高效液相色譜-氫化物發(fā)生-原子熒光聯(lián)用技術(shù)測定飲用水中四種形態(tài)砷
發(fā)布時間:2018-01-16 14:26
本文關(guān)鍵詞:高效液相色譜-氫化物發(fā)生-原子熒光聯(lián)用技術(shù)測定飲用水中四種形態(tài)砷 出處:《環(huán)境與職業(yè)醫(yī)學(xué)》2017年04期 論文類型:期刊論文
更多相關(guān)文章: 高效液相色譜 原子熒光 砷 形態(tài) 飲用水
【摘要】:[目的]建立高效液相色譜-氫化物發(fā)生-原子熒光(HPLC-HG-AFS)聯(lián)用技術(shù)測定生活飲用水中四種形態(tài)砷的方法。[方法]通過高效液相色譜實現(xiàn)水中形態(tài)砷的分離,原子熒光進(jìn)行定性及定量。對硼氫化鉀質(zhì)量分?jǐn)?shù)、鹽酸體積分?jǐn)?shù)、氫氧化鈉質(zhì)量分?jǐn)?shù)、緩沖液質(zhì)量濃度和溶液p H值等實驗條件進(jìn)行優(yōu)化,再運用到實際樣本檢測中。[結(jié)果]三價砷[As(Ш)]、一甲基砷酸(MMA)、二甲基砷酸(DMA)和五價砷[As(V)]的檢出限分別為0.36、0.69、0.39和2.34μg/L,四種形態(tài)砷的標(biāo)準(zhǔn)曲線相關(guān)系數(shù)均大于0.999,平均加標(biāo)回收率為95.7%~107.9%,相對標(biāo)準(zhǔn)偏差為0.23%~9.31%。[結(jié)論]采用HPLC-HG-AFS技術(shù)測定飲用水中不同形態(tài)砷,檢出限低,精密度好,結(jié)果準(zhǔn)確可靠。
[Abstract]:[Objective to establish a high performance liquid chromatography-hydride generation-atomic fluorescence spectrometry (HPLC-HG-AFS) method for the determination of four forms of arsenic in drinking water. [Methods] the speciation of arsenic in water was separated by HPLC. The mass fraction of potassium borohydride, hydrochloric acid and sodium hydroxide were determined qualitatively and quantitatively by atomic fluorescence spectrometry. The experimental conditions such as buffer concentration and pH value of the solution were optimized and applied to the actual sample detection. [Results] trivalent arsenic. [As( +), monomethyl arsenate (MMAA), dimethyl arsenate (DMA) and pentavalent arsenic (as). [The detection limits were 0.36 渭 g / L and 2.34 渭 g / L, respectively. The correlation coefficients of the standard curves of the four forms of arsenic were all greater than 0.999. The average recovery was 95.7% and the relative standard deviation was 0.233.31. [Conclusion: the determination of arsenic in drinking water by HPLC-HG-AFS has the advantages of low detection limit, good precision, and accurate and reliable results.
【作者單位】: 武漢科技大學(xué)公共衛(wèi)生學(xué)院職業(yè)危害識別與控制湖北省重點實驗室;
【分類號】:R123.1
【正文快照】: 砷(As)是一種具有準(zhǔn)金屬特性的非金屬元素,最早以砒霜為人們所熟知,在環(huán)境中普遍存在[1]。自然水域的砷污染是一個世界性問題[2]。水中砷污染的來源主要有:自然源,包括礦物及巖石的風(fēng)化、火山的噴發(fā)和溫泉上溢;人工源,主要是砷化物的開采和冶煉[3]。上述因素對地下水及飲用水
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐s,
本文編號:1433501
本文鏈接:http://sikaile.net/yixuelunwen/yufangyixuelunwen/1433501.html
最近更新
教材專著