新型壓電傳感器提取聽骨鏈聲信號(hào)及后期處理
[Abstract]:Objective: to develop a new piezoelectric sensor by vacuum encapsulation and titanium clip, and to pick up the acoustic signal in vitro by coupling the new piezoelectric sensor with the ossicular chain in the ears of fresh temporal bone specimens and living cats. The experimental study on the post-processing of acoustic signals systematically verified the feasibility of the sound picking strategy of ossicular chain vibration, and provided a solution for the whole cochlear implantation. Methods: (1) A new piezoelectric sensor was fabricated by adding titanium clip, lead tube insulator and laser package. The simulation experiment in vitro was carried out by fixing it on the loudspeaker windshield. (2) A three-dimensional reconstruction model of a new piezoelectric sensor coupled to the human auditory ossicular chain was established. Finite element analysis is used to simulate the frequency response displacement of ossicular chain before and after coupling the new piezoelectric sensor and the frequency response displacement of the new piezoelectric sensor on the human ossicular chain. (3) the new piezoelectric sensor is implanted into the fresh temporal bone. The ossicular chain incus long process and tympanic cavity of the specimen, A total of 7 ears (6 cadaveric heads) were tested to record the frequency response at different frequencies. (4) the new piezoelectric sensor was implanted into fresh temporal bone, and the Burst signal was given by the test system. The input signal and output signal of the new piezoelectric sensor are recorded synchronously by NI instrument, thus the relative delay time of the sensor system is analyzed. (5) the new piezoelectric sensor is implanted into the hammer neck and auditory vesicle of the auditory ossicular chain of the cat in vivo. A total of 5 ears (4 cats) were tested to record the frequency response at different frequencies. (6) the distortion and distortion of the pick-up signal of the new piezoelectric sensor were processed, and the total harmonic distortion and signal-to-noise ratio of the signal were calculated. The quality of the signal before and after processing is compared. Results: (1) it was found that the new piezoelectric sensor with a mass of 67 mg could sensitively pick up audible acoustic signals in the whole frequency band and had a flat frequency response curve. It can be used in vivo implantation experiment. (2) finite element analysis shows that the coupling of the new piezoelectric sensor to the long process of incus has little effect on the frequency response displacement of stapes floor, but increases slightly below 1000Hz and decreases slightly above 1000Hz. The new piezoelectric sensor fixed to the long process of incus can produce the corresponding displacement response, but slightly lower than the movement of stapes floor. (3) fresh temporal bone implantation experiment found, After coupling to the long process of incus, the new piezoelectric sensor can pick up the acoustic signal in vitro, and the low frequency interference is small and the resonance phenomenon is weak, which is compared with that suspended in tympanic cavity (- 92.94 dB rms ref 1V at 1000Hz). After coupling with the long process of ossicular anvil, it has a better spectral response (- 56.58 dB rms ref 1V at 1000Hz), and the 100Hz-10000Hz frequency response curve is flat. (4) the phase difference between input and output signal channels is compared. It is found that the relative delay time of the new piezoelectric sensor is 14.75 ms. (5). It is found that the new piezoelectric sensor can pick up the acoustic signal in vitro after coupling to the hammer neck. Compared with that placed in auditory vesicle (- 87.43 dB rms ref 1V at 1000Hz), it had a better spectral response (- 46.92 dB rms ref 1V at 1000Hz) after coupling with hammer neck. The 100Hz-10000Hz frequency response curve is flat. (6) compared with the original signal, the signal-to-noise ratio (SNR) of the processed signal is obviously increased, and the overall harmonic distortion is obviously reduced. Conclusion: (1) the fixation method with titanium clip has been developed. A new type of piezoelectric sensor with good sealing and biocompatibility is proposed. (2) the feasibility of picking up the acoustic signal of ossicular chain vibration by a new piezoelectric sensor is preliminarily demonstrated by systematic experiments. (3) A new piezoelectric sensor After processing, the picked signal can further improve the signal quality. (4) the new piezoelectric sensor is combined with the inner electrode of the cochlea. The long-term implantation effect and complications still need to be further studied.
【學(xué)位授予單位】:復(fù)旦大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:R764
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱婧;彭承琳;張錦華;黃戎;;壓電傳感器及其在生物醫(yī)學(xué)中的應(yīng)用研究[J];醫(yī)療衛(wèi)生裝備;2006年07期
2 魏萬之,胡昌文,魏開湄,聶利華,姚守拙;壓電石英傳感器同時(shí)測(cè)定水溶液中維生素B_1及維生素C[J];藥學(xué)學(xué)報(bào);1993年10期
3 麥慶軍;;壓電傳感器二測(cè)量電路特性的探討[J];數(shù)理醫(yī)藥學(xué)雜志;2009年01期
4 衛(wèi)琳;畢良佳;孟憲文;蘇鑫;白雪峰;;鉭墊-壓電傳感器裝置對(duì)磨牙癥的檢測(cè)—力的再現(xiàn)性[J];哈爾濱醫(yī)科大學(xué)學(xué)報(bào);2008年06期
5 陳天華;王倩;;基于MSP430和壓電傳感器的人體心率檢測(cè)系統(tǒng)設(shè)計(jì)[J];制造業(yè)自動(dòng)化;2013年15期
6 劉燕萍;孟利娟;吳平輝;;一種聲光顯示聽診器的研制[J];科技資訊;2012年03期
7 劉明華,府偉靈,張雪,陳鳴,薛強(qiáng);離子強(qiáng)度對(duì)壓電傳感器基因雜交動(dòng)力學(xué)的影響[J];第三軍醫(yī)大學(xué)學(xué)報(bào);2002年01期
8 齊永志;姚春艷;羅陽(yáng);府偉靈;;適配子型壓電傳感器的實(shí)驗(yàn)研究[J];中華醫(yī)院感染學(xué)雜志;2008年03期
9 劉明華,府偉靈,陳鳴,汪松林,黃慶;不同溫度對(duì)壓電傳感器基因雜交效應(yīng)的影響[J];重慶醫(yī)學(xué);2001年06期
10 李鴻波,徐明龍,姚月玲,張少鋒;PVDF動(dòng)態(tài)鉭力測(cè)試儀的研制及應(yīng)用[J];實(shí)用口腔醫(yī)學(xué)雜志;2004年02期
相關(guān)會(huì)議論文 前5條
1 王軍鋒;楊黎明;遲慶;;基體隔離式高靈敏度壓電傳感器的設(shè)計(jì)[A];中國(guó)工程物理研究院科技年報(bào)(2002)[C];2002年
2 石曉玲;袁慎芳;邱雷;;壓電智能夾層抗電磁干擾設(shè)計(jì)[A];2010航空試驗(yàn)測(cè)試技術(shù)學(xué)術(shù)交流會(huì)論文集[C];2010年
3 王世文;;埋入式壓電傳感器機(jī)械-電場(chǎng)耦合特性研究[A];復(fù)合材料的現(xiàn)狀與發(fā)展——第十一屆全國(guó)復(fù)合材料學(xué)術(shù)會(huì)議論文集[C];2000年
4 劉向陽(yáng);張平;韓振海;;動(dòng)態(tài)補(bǔ)償法在壓電傳感器靜態(tài)校準(zhǔn)中的應(yīng)用[A];第二屆全國(guó)信息獲取與處理學(xué)術(shù)會(huì)議論文集[C];2004年
5 姚軍;朱振宇;;壓電方程與兩種壓電傳感器模型[A];中國(guó)航空結(jié)構(gòu)動(dòng)力學(xué)專業(yè)組第十六屆學(xué)術(shù)交流會(huì)論文集[C];2008年
相關(guān)重要報(bào)紙文章 前3條
1 四維 摘譯;公文包防盜報(bào)警器[N];電子報(bào);2008年
2 江明 譯;震動(dòng)式防盜報(bào)警器[N];電子報(bào);2003年
3 天生 摘譯;敲門警報(bào)指示電路[N];電子報(bào);2003年
相關(guān)博士學(xué)位論文 前7條
1 賈賢浩;新型壓電傳感器提取聽骨鏈聲信號(hào)及后期處理[D];復(fù)旦大學(xué);2014年
2 徐東宇;水泥基壓電傳感器的制備、性能及其在土木工程領(lǐng)域的應(yīng)用研究[D];山東大學(xué);2010年
3 高娜;微型壓電傳感器提取聽骨鏈聲信號(hào)及后期處理[D];復(fù)旦大學(xué);2013年
4 連琰;新型微電極串聯(lián)壓電傳感器在生物分析中的應(yīng)用研究[D];湖南大學(xué);2014年
5 張進(jìn)忠;壓電體聲波微生物傳感及其應(yīng)用研究[D];湖南大學(xué);2001年
6 楊段玲;固液界面吸附及火災(zāi)物證鑒定中新分析方法的研究[D];山東大學(xué);2005年
7 米賢文;新型噬菌體壓電傳感器快速檢測(cè)結(jié)核分枝桿菌的機(jī)理及其藥敏應(yīng)用效果的研究[D];湖南大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 薛巖波;水泥壓電傳感器信號(hào)分析處理系統(tǒng)的研究與開發(fā)[D];濟(jì)南大學(xué);2010年
2 何濤燾;縱波壓電傳感器瞬態(tài)特性的模擬與實(shí)驗(yàn)研究[D];湘潭大學(xué);2010年
3 沙飛;壓電傳感器應(yīng)力/應(yīng)變傳感特性及其在混凝土監(jiān)測(cè)中的應(yīng)用[D];濟(jì)南大學(xué);2014年
4 亓永;提高壓電傳感器信噪比的數(shù)據(jù)處理新方法研究與應(yīng)用[D];山東師范大學(xué);2006年
5 趙猛;凝血酶原時(shí)間壓電傳感器頻率動(dòng)態(tài)響應(yīng)規(guī)律的研究及壓電凝血傳感器檢測(cè)系統(tǒng)的研制[D];第三軍醫(yī)大學(xué);2006年
6 李蜜蜜;水泥基壓電傳感器的制備及其應(yīng)用研究[D];濟(jì)南大學(xué);2013年
7 李少雄;一種新型聚合物石英壓電傳感器的設(shè)計(jì)及其力學(xué)行為研究[D];北京交通大學(xué);2013年
8 杜軍國(guó);幾種非理想狀態(tài)下壓電傳感器的響應(yīng)及應(yīng)用[D];山東師范大學(xué);2010年
9 項(xiàng)美玉;新型串聯(lián)式壓電微生物傳感器的構(gòu)建及應(yīng)用研究[D];湖南大學(xué);2012年
10 侯海玉;智能壓電傳感器開發(fā)平臺(tái)的設(shè)計(jì)與研究[D];燕山大學(xué);2006年
,本文編號(hào):2478755
本文鏈接:http://sikaile.net/yixuelunwen/yank/2478755.html