HTRA1基因突變對血管平滑肌細胞功能的影響及其與氧化還原反應關系研究
[Abstract]:CARASIL is a monogenic disease that directly affects the small blood vessels of the brain. It is caused by a mutation in the Htr A serine peptidase/protease 1 (HTRA1) gene. CARASIL occurs in early adulthood, mostly in men, and its exact incidence is not yet known. The main clinical manifestations are ischemic stroke or progressive deterioration of brain function, dementia, early alopecia and premature alopecia. Severe low back pain, deformable spondylopathy, and intervertebral disc herniation. Imaging features include diffuse white matter changes in the basal ganglia and thalamus, and multiple lacunar infarctions. Histopathologically, CARASIL is characterized by arteriosclerosis of small perforating arteries with intimal thickening. Vascular smooth muscle cell loss and clear degeneration of the mesangium. HTRA1 gene is located in the 10q26 region and contains nine exons. CARASIL-related allele variants appear on exons 1, 3, 4 and 6. There are 11 mutations, including 7 missense mutations, 1 shift mutation, 2 nonsense mutations and 1 deletion mutation mutation. HTRA1 is a secretory serine. Acid protease, which can promote the degeneration of extracellular matrix protein, also plays an important physiological role. It is related to arthritis, cancer, familial ischemic cerebellar vascular disease, age-related macular degeneration and Alzheimer's disease. Loss of function of HTRA1 protease leads to CARASIL, but the exact mechanism is not yet clear. A new missense mutation of HTRA1 gene on exon 6, 1091TC (point mutation), was found in the first CARASIL family in China. Previous studies have shown that the mutation of HTRA1 gene can reduce the expression of HTRA1m RNA and its protein, and induce the up-regulation of TGF-beta 1/Smads/CTGF signaling pathway. In this study, we used HTRA mutant and wild-type lentiviral expression vectors to infect human cerebral vascular smooth muscle cells, and observed the function and redox reaction of the cells, so as to explore the pathogenesis of CARASIL. Methods: The primers of HTRA1 gene were designed and constructed using NCBI Genbank database. Wild and mutant HTRA1 genes were harvested and amplified by PCR and the lentiviral vector GV287 was digested. The HTRA1 gene was recombined into GV287 and transformed into pre-cultured competent cells. The recombinant HTRA1 was preliminarily identified by PCR, and the positive cells identified by PCR were sequenced and compared with the HTRA1 sequence in Genbank database to verify the success of the construction of lentiviral vector. Results: The target fragments of HTRA1 gene and HTRA1-Mut gene were amplified by designed primers PCR. After digestion with GV287, the transfected cells were transformed successfully. The positive clones identified by PCR were sequenced and compared with Genbank number. The sequence of HTRA1 gene and HTRA1-Mut gene in the database was identical. After transfection of 293T with HTRA1/HTRA1-Mut expression vector, obvious fluorescence was observed and the viral titer was determined as 2E+8TU/ml. Conclusion: Eukaryotic expression vectors of HTRA1 gene and HTRA1-Mut gene were successfully constructed, and HTRA1 and HTRA1-Mut lentiviruses were successfully packaged and titered. Objective: To establish a model of human cerebral vascular smooth muscle cells (HBVSMC) infected with HTRA1 and HTRA1-Mut lentiviral vectors. Methods: HBVSMC cells were cultured and phenotyped by alpha-SMA antibody fluorescence staining. HBVSMC was infected by lentiviral vector with over-expression of HTRA1 and HTRA1-Mut. Results: HBVSMC grew well, the morphology of cells was normal under light microscope, and the cells stained with anti-alpha-SMA antibody showed good fluorescence staining; HBVSMC with over-expression of HTRA1 and HTRA1-Mut expressed fluorescence, and the fluorescence rate was over 80%. BVSMC cell lines were identified successfully and the model of VSMC infected with HTRA1 and HTRA1-Mut lentiviral vector was established successfully. Part III The effect of HTRA1 gene mutation on proliferation, migration and apoptosis of human VSMC Objective: To detect the effect of HTRA1 and HTRA1-Mut lentiviral vector on HBVSMC transfection. Methods: HBVSMC was divided into three groups: normal NC human cerebral vascular smooth muscle cell group, OE-WT HTRA1 wild type virus infection cell group and OE-MU HTRA1 mutant virus infection cell group. Results: Compared with normal human cerebrovascular smooth muscle cells (NC), the proliferation of HTRA1 wild-type virus-infected cells (OE-WT) was not significantly changed, and the proliferation of HTRA1 wild-type virus-infected cells (OE-MU) was slowed down. Compared with normal human cerebrovascular smooth muscle cells (NC), the Transwell metastasis of HTRA1 wild-type virus-infected cells (OE-WT) was observed. There was no significant difference (P 0.05), but the Transwell metastasis rate of HTRA1 mutant virus-infected cells (OE-MU) was decreased (P 0.05). Compared with OE-MU group, the metastasis rate of human cerebral vascular smooth muscle cells in OE-WT group was significantly decreased (P 0.05). Compared with NC group, the apoptosis of HTRA1 wild type virus-infected cells (OE-WT) was decreased (P 0.05), but the apoptosis rate of HTRA1 protrusion was decreased (P 0.05). There was no significant decrease in the number of apoptosis in OE-MU cells (P 0.05). Compared with OE-WT cells infected by HTRA1, the number of apoptosis in OE-MU cells infected by HTRA1 was increased (P 0.05). Conclusion: The proliferation and migration activity of OE-MU cells infected by HTRA1 mutation gene were decreased, and the migration activity was also decreased. Objective: To detect the changes of oxidative stress in HBVSMC transfected with HTRA1 and HTRA1-Mut lentiviral vectors. Methods: NC and OE were collected at specific time points after HTRA1 and HTRA1-Mut lentiviral vectors were transfected into HBVSMC. The expression of NOXm RNA and protein in three groups of cells was detected by Real-time PCR and Western Blot respectively, and the levels of reactive oxygen species (ROS) in three groups of cells were detected by DCFH-DA method. The expression level of NOX protein in normal human cerebral vascular smooth muscle cells was lower than that in normal human cerebral vascular smooth muscle cells, but the expression level of NOX 4 protein was higher after infection with lentivirus LV-HRTA1 and LV-HRTA1-MUT. The expression of ROS in normal human cerebral vascular smooth muscle cells was lower than that in lentivirus LV-HRTA1-MUT cells. CONCLUSION: 1. The production of reactive oxygen species (ROS) and the expression of NOX4m RNA in human cerebral vascular smooth muscle cells infected with HTRA1 mutant gene increased, but NOX4 was not significantly different from that of HTRA1 wild type gene. Compared with the other two groups, the expression of protein was increased. 2. The proliferation, migration and apoptosis of human cerebral vascular smooth muscle cells infected with HTRA1 mutant gene decreased, which may be related to oxidative stress in cells.
【學位授予單位】:第二軍醫(yī)大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:R743
【相似文獻】
相關期刊論文 前10條
1 錢結勝,王深明,劉大鉞,林穎,黃雪玲;靜止壓力誘導血管平滑肌細胞的增殖與凋亡[J];中華醫(yī)學雜志;2005年29期
2 陸崢飛;;胰島素減輕血管平滑肌細胞鈣化但增加血管平滑肌細胞的磷轉運[J];生理科學進展;2007年04期
3 信栓力;吳宗貴;;殼糖體外介導血管平滑肌細胞內皮型一氧化氮合酶基因轉移的初步研究[J];上海醫(yī)學;2007年10期
4 盛曉峗;王樹人;;血管平滑肌細胞移行及表型轉換的分子機制[J];中國動脈硬化雜志;2008年11期
5 梁明達;邱殷慶;;人血管平滑肌細胞系的建立及其特性[J];云南醫(yī)藥;1988年03期
6 高鈺琪,孫秉庸;血管平滑肌細胞的鈣動力學[J];生理科學進展;1990年04期
7 張茜;血管緊張素Ⅱ受體與血管平滑肌細胞的增生、肥大[J];高血壓雜志;1997年01期
8 謝良地,吳可貴,陳達光,,A.D.Hughes,Z.Clunn,J.Lymn;血小板源生長因子誘導血管平滑肌細胞遷移及機構[J];中國動脈硬化雜志;1998年01期
9 盧次勇,凌文華,馬靜,吳聰娥;氧化型低密度脂蛋白對血管平滑肌細胞應激活化蛋白激酶活性及凋亡的影響[J];華南預防醫(yī)學;2002年04期
10 季寧東;血管平滑肌細胞的增殖機制[J];中國基層醫(yī)藥;2002年03期
相關會議論文 前10條
1 童中藝;王佐;傅仕福;危當恒;姚峰;呂運成;喻丹鳳;王貴學;;氧化型低密度脂蛋白對大鼠血管平滑肌細胞基質細胞衍生因子1α表達的影響[A];第八次全國動脈硬化性疾病學術會議論文集[C];2005年
2 劉建平;唐波;何國祥;;直流電場影響血管平滑肌細胞遷移和增殖的實驗研究[A];中華醫(yī)學會心血管病學分會第八次全國心血管病學術會議匯編[C];2006年
3 王寧寧;王笑云;何東元;熊明霞;張飛飛;楊俊偉;;體外高磷誘導人血管平滑肌細胞鈣化的作用研究[A];中華醫(yī)學會腎臟病學分會2006年學術年會論文集[C];2006年
4 趙瑾;遲路湘;諸興明;;兔頸動脈粥樣硬化斑塊形成過程中血管平滑肌細胞功能變化的動態(tài)觀察[A];第十一屆全國神經病學學術會議論文匯編[C];2008年
5 余惠珍;謝良地;朱鵬立;;人組織激肽釋放酶基因轉移對血管平滑肌細胞遷移的影響[A];中華醫(yī)學會第11次心血管病學術會議論文摘要集[C];2009年
6 唐波;何國祥;劉建平;李德;;血管平滑肌細胞受電場作用后遷移的變化[A];中華醫(yī)學會心血管病分會第八次全國心血管病學術會議匯編[C];2004年
7 劉建平;何國祥;唐波;景濤;;電場干預對血管平滑肌細胞表面血小板衍化生長因子受體分布的影響[A];中華醫(yī)學會心血管病學分會第八次全國心血管病學術會議匯編[C];2006年
8 唐波;何國祥;劉建平;李德;;電場干預對血管平滑肌細胞形態(tài)和細胞骨架的影響[A];中華醫(yī)學會心血管病分會第八次全國心血管病學術會議匯編[C];2004年
9 唐波;劉建平;何國祥;李德;;直流電場對大鼠血管平滑肌細胞骨架分布的作用[A];中華醫(yī)學會心血管病學分會第八次全國心血管病學術會議匯編[C];2006年
10 唐波;劉建平;何國祥;李德;;直流電場對血管平滑肌細胞遷移的影響[A];中華醫(yī)學會心血管病學分會第八次全國心血管病學術會議匯編[C];2006年
相關重要報紙文章 前2條
1 張誠;選擇有挑戰(zhàn)性的研究課題[N];科技日報;2005年
2 余寧寧;冠心病病因迷霧撥開[N];健康報;2004年
相關博士學位論文 前10條
1 宋海波;(一)ROS調節(jié)大鼠血管中膜干細胞向血管平滑肌細胞分化機制的研究 (二)Iriain通過ERK信號通路促進人臍靜脈內皮細胞的增殖并部分抑制高糖誘導的凋亡[D];山東大學;2015年
2 陳齊山;microRNA-34a調控血管平滑肌細胞表型轉化在血管損傷修復及重塑中的作用及機制[D];浙江大學;2015年
3 萬雪嬌;BK通道在張應變誘導血管平滑肌細胞分化中的作用及其機制[D];上海交通大學;2015年
4 丁雪燕;OCT4對血管平滑肌細胞增殖遷移及血管新生內膜增生的作用及機制[D];第二軍醫(yī)大學;2016年
5 武玉濤;microRNA-214通過靶向作用QKI調控干細胞向血管平滑肌細胞分化研究[D];浙江大學;2016年
6 李鵬云;SIRT1在重癥失血性休克血管平滑肌細胞線粒體損傷中的作用[D];南方醫(yī)科大學;2015年
7 石瑜;HTRA1基因突變對血管平滑肌細胞功能的影響及其與氧化還原反應關系研究[D];第二軍醫(yī)大學;2015年
8 武衛(wèi)東;大鼠血管平滑肌細胞蛋白組學的研究以及尼古丁對血管平滑肌細胞蛋白和基因表達影響的研究[D];山西醫(yī)科大學;2005年
9 馬晶;β-腎上腺素能受體不同亞型對于血管平滑肌細胞遷移、凋亡及增殖的影響及其信號轉導機制[D];中國人民解放軍軍醫(yī)進修學院;2004年
10 朱清;腎素-血管緊張素系統(tǒng)及其阻斷劑對血管平滑肌細胞在動脈粥樣硬化中的作用機理的研究[D];山東大學;2003年
相關碩士學位論文 前10條
1 馮模強;OPG與冠狀動脈粥樣硬化相關性及其對人血管平滑肌細胞鈣化的影響[D];川北醫(yī)學院;2015年
2 張睦清;維生素K2對高磷誘導的大鼠血管平滑肌細胞鈣化的影響和機制[D];河北醫(yī)科大學;2015年
3 成龍;水蛭酶解提取物抑制脂多糖誘導的大鼠血管平滑肌細胞ICAM-1、VCAM-1及MCP-1的表達[D];山東大學;2015年
4 匡陳偉;大鼠血管平滑肌細胞表型轉化前后NCX1表達變化的研究[D];昆明醫(yī)科大學;2015年
5 李梅;RNA干擾對大鼠血管平滑肌細胞Ca_v1.2、Ca_v1.3基因表達的影響[D];山西大學;2015年
6 陳天雷;Klotho蛋白對血管平滑肌細胞鈣化的影響及其機制研究[D];南京醫(yī)科大學;2015年
7 張苗;失活氨基脲敏感性胺氧化酶對動脈粥樣硬化發(fā)展的影響[D];蘇州大學;2016年
8 侯夢琳;姜黃素抑制大鼠血管平滑肌細胞鈣化的凋亡信號機制研究[D];中山大學;2016年
9 龔海燕;高糖對小鼠血管平滑肌細胞鈣化的影響及機制[D];南華大學;2016年
10 歐林靈;miR-32-5p在小鼠血管平滑肌細胞中對PTEN表達調控的作用及機制研究[D];南華大學;2016年
本文編號:2241086
本文鏈接:http://sikaile.net/yixuelunwen/shenjingyixue/2241086.html