帕金森小鼠模型運動技能學習障礙的突觸可塑性機制
[Abstract]:Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. The most significant pathological change is the depletion of dopaminergic neurons in the brain. The main clinical symptoms include motor dysfunction and cognitive impairment, especially motor learning impairment. Most studies focus on the basal ganglia, indicating that motor dysfunction is mainly caused by abnormalities in the structure and function of the basal ganglia neural circuits, but there is no good explanation for the decline of motor learning ability and memory impairment in PD. Adaptability is an important basis for motor learning. Dopaminergic signal processing in the motor cortex can enhance the coordination of related movements and facilitate the completion of fine movements. Symptoms. So, what happens to the motor cortical circuits as dopaminergic neurons are depleted? Is this an intrinsic cause of motor learning and memory impairment? To solve these problems, we created skull windows in the skulls of Thy1-YFP-H line transgenic mice and demonstrated them with two-photon laser scans. The apical dendrites of the fifth layer of vertebral neurons were imaged in vivo under microscope to study the dynamic changes of synaptic plasticity induced by dopamine depletion in the motor cortex. The main contents of this study were as follows: (1) Establishing stable and reliable motor cortex synaptic plasticity in PD mice. PD mouse model was established by continuous intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The damage degree of dopaminergic neurons was identified by immunohistochemical staining, and the reliability and stability of the PD model were tested. Dynamic changes of dendritic spines in the motor cortex of mice: Two-photon in vivo imaging of the primary motor cortex of mice with different PD models revealed a significant increase in the formation and extinction rates of dendritic spines, but this increase occurred only in the primary motor cortex, and the change rate of dendritic spines in the nearby barrel cortex remained unchanged. Effects. Using L-DOPA, the most commonly used drug in the treatment of PD, exogenous dopamine supplementation could partly reverse the increased plasticity of motor cortical dendritic spines induced by dopamine depletion, suggesting that the increased dynamic changes of motor cortical dendritic spines should be due to dopamine depletion. (3) The remodeling of primary motor cortical nerve circuits in PD mice: with the increase of dopamine depletion With the increase of MPTP dosage, the damage of dopaminergic neurons was aggravated. The formation rate, extinction rate and change rate of dendritic spines in the motor cortex of PD mice increased continuously, and the density of dendritic spines decreased slightly. These data indicate that with the depletion of dopaminergic neurons, the abnormal dynamic plasticity of the motor cortex through the dendritic spines makes the original synaptic junction selective disappear, and the new synaptic junction specificity is established, resulting in the disorder of the original neural connection, and the abnormal remodeling of the neural circuits. (4) The motor skills learning and memory of PD mice Synaptic mechanism of dysfunction: PD mice were trained in motor skill learning, and two-photon in vivo imaging was used to imaging at different intervals during training. The formation rate, extinction rate and stability rate of new dendritic spines induced by motor skill learning were analyzed. Amine depletion is manifested in behavioral learning and memory impairment of motor skills, and in neural circuits, dendritic spines in the motor cortex do not grow and die normally during learning, and the stability of the new dendritic spines induced by motor learning skills decreases. In summary, this study first confirmed the abnormality of synaptic plasticity in the motor cortex of Parkinson's mice by two-photon in vivo imaging, and observed a large number of abnormal synaptic loss and birth of the basic structural unit of neural signal transduction. The synaptic mechanism of motor learning and memory impairment in Parkinson's mouse model was elucidated by behavioral experiments.
【學位授予單位】:華中科技大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:R742.5;R-332
【相似文獻】
相關期刊論文 前1條
1 黃竹杭;李高峰;賴勤;楊雪芹;;運用外部注意焦點提高高水平選手開放式運動技能學習效率的實驗研究[J];北京體育大學學報;2012年07期
相關會議論文 前8條
1 魏高峽;羅勁;李佑發(fā);;長時運動技能學習對運動員大腦結構的影響[A];第五屆全國青年體育科學學術會議、第二屆中國體育博士高層論壇論文集[C];2008年
2 孫夕鷺;于秀;;不同知覺通道偏愛小學生的課堂運動技能學習特征[A];第九屆全國體育科學大會論文摘要匯編(2)[C];2011年
3 周亞琴;;內(nèi)隱運動技能學習中反饋研究的文獻分析[A];第十三屆全國高校田徑科研論文報告會論文專輯[C];2003年
4 錢建龍;何琴;;運動技能學習困難中學生亞健康狀況調(diào)查研究[A];第4屆全國青年體育科學學術會議論文摘要匯編[C];2005年
5 張紹禮;赫秋菊;;體育教育專業(yè)學生運動技能學習策略的現(xiàn)狀調(diào)查與分析[A];第七屆全國體育科學大會論文摘要匯編(一)[C];2004年
6 錢建龍;;運動技能學習困難中學生體質(zhì)和心理健康的研究[A];第8屆全國運動心理學學術會議論文匯編[C];2006年
7 高新友;馬麗君;武小路;徐苗;;運動生理學課程“創(chuàng)新教育”的研究[A];2007全國運動生理學論文報告會論文集[C];2007年
8 許昭;;自主學習能力在鉛球教學和跳遠教學中的遷移訓練[A];第九屆全國體育科學大會論文摘要匯編(3)[C];2011年
相關博士學位論文 前3條
1 郭利麗;帕金森小鼠模型運動技能學習障礙的突觸可塑性機制[D];華中科技大學;2016年
2 譚嘉輝;足球運動技能學習中注意焦點的追加反饋實驗研究[D];北京體育大學;2012年
3 王海燕;復合反饋對運動技能學習影響的研究[D];北京體育大學;2013年
相關碩士學位論文 前10條
1 于淋;注意焦點對新手投擲飛鏢技能學習與表現(xiàn)影響的研究[D];武漢體育學院;2015年
2 姚金亭;石家莊市高職院校學生運動技能學習方法研究[D];河北師范大學;2016年
3 季楊;水平四田徑運動技能學習評價指標體系的構建[D];遼寧師范大學;2016年
4 孫海勇;運動技能學習的理論研究與實踐探索[D];南京師范大學;2008年
5 代剛;學習策略在體育專業(yè)運動技能學習過程中的應用性研究[D];貴州師范大學;2006年
6 李芳菲;新課程標準下初中生運動技能學習評價的研究[D];華東師范大學;2010年
7 慎少帥;體育與非體育專業(yè)大學生運動技能學習策略比較研究[D];東北師范大學;2012年
8 羅闖;開放式運動技能學習原理在中學籃球傳球教學中運用效果研究[D];吉林大學;2014年
9 許昭;運動技能學習的自我調(diào)節(jié)學習訓練研究[D];山東師范大學;2009年
10 李樂;運動技能學習過程中的社會反饋與自我反饋的相互作用研究[D];蘇州大學;2013年
,本文編號:2238728
本文鏈接:http://sikaile.net/yixuelunwen/shenjingyixue/2238728.html