天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

腦缺血和腦膠質(zhì)瘤的高光譜成像研究

發(fā)布時(shí)間:2018-08-25 07:41
【摘要】:背景與目的: 神經(jīng)外科手術(shù)中實(shí)時(shí)評(píng)估腦組織的血液灌注狀態(tài)、分辨惡性腫瘤的邊界對(duì)指導(dǎo)手術(shù)、改善預(yù)后具有重要意義。而術(shù)者肉眼觀察和目前的影像檢查技術(shù)(如CT、MRI等)往往難以達(dá)到這一要求。高光譜成像技術(shù)不僅能實(shí)時(shí)獲取所測(cè)物體的空間圖像,而且能通過(guò)光譜分析提取物質(zhì)的本征信號(hào),可能成為實(shí)時(shí)引導(dǎo)手術(shù)、實(shí)現(xiàn)精準(zhǔn)切除的新方法。 為了探討生物組織在可見(jiàn)近紅外波段的漫反射光譜特性,本研究測(cè)量了不同吸收和散射性質(zhì)溶液的光譜,分析了其變化規(guī)律;為了探尋缺血腦組織及腦膠質(zhì)瘤的高光譜成像方法,本課題測(cè)量了缺血腦組織和膠質(zhì)瘤組織的特征光譜,分析了二者與正常腦組織光譜的差異,篩選了可有效辨別缺血腦組織及腦膠質(zhì)瘤的高光譜成像參數(shù),建立了圖像處理算法。以期為高光譜成像的臨床應(yīng)用奠定基礎(chǔ)。 材料與方法: 1.采用光纖光譜儀測(cè)量了血液和脂肪乳混合溶液的可見(jiàn)近紅外漫反射光譜,分析了不同血紅蛋白濃度、不同血氧飽和度及不同脂肪乳濃度的光譜曲線變化規(guī)律。 2.建立了SD大鼠右側(cè)大腦中動(dòng)脈阻塞(MCAO)模型,采用光纖光譜儀在體測(cè)量了正常及缺血1h、3h、6h、12h、24h腦組織的可見(jiàn)近紅外漫反射光譜,分析了缺血腦組織與正常腦組織的特征性光譜差異。 3.采用高光譜成像儀結(jié)合手術(shù)顯微鏡對(duì)離體正常腦組織及缺血1h、3h、6h、12h、24h腦組織進(jìn)行了光譜成像研究,提取了正常和缺血腦組織光譜,,分別用主成分分析(PCA)及光譜比值算法處理高光譜圖像,并與TTC染色和HE染色進(jìn)行對(duì)照。 4.建立了裸鼠皮下C6、GL261、U87膠質(zhì)瘤移植模型,C57小鼠顱內(nèi)GL261膠質(zhì)瘤移植模型,采用光纖光譜儀在體測(cè)量了裸鼠正常腦組織、皮下C6、GL261、U87膠質(zhì)瘤組織、C57小鼠顱內(nèi)GL261膠質(zhì)瘤組織及臨床手術(shù)病人膠質(zhì)瘤的可見(jiàn)近紅外漫反射光譜,分析了膠質(zhì)瘤組織與正常腦組織的特征性光譜差異。 5.采用高光譜成像儀結(jié)合手術(shù)顯微鏡對(duì)離體和在體顱內(nèi)GL261膠質(zhì)瘤組織進(jìn)行了光譜成像研究,提取了正常腦組織和膠質(zhì)瘤的光譜,用光譜比值算法處理高光譜圖像,并與HE染色、MRI成像、RGB成像進(jìn)行了比較。 主要結(jié)果: 1.血紅蛋白在542nm和577nm波段具有特征的吸收峰,500~600nm波段光譜曲線的變化可反映血紅蛋白濃度、血氧飽和度的變化;700~900nm波段光譜曲線可反映樣本的散射性質(zhì)。 2.缺血后1h開(kāi)始,梗塞區(qū)腦組織在400~900nm波段的光譜特征與正常腦組織便存在明顯差異,且缺血時(shí)間越長(zhǎng)(3h、6h、12h、24h)差異越顯著。 3.基于主成分分析的高光譜成像可有效識(shí)別缺血后1h、3h、6h、12h、24h腦組織;基于R545/R560光譜比值的高光譜成像可清晰顯示缺血6h、12h、24h腦組織區(qū)域,計(jì)算面積(28.09±4.81、50.80±5.31、60.95±6.27mm2)與TTC染色(26.06±4.26、48.68±4.31、60.29±5.96mm2)高度吻合。 4.裸鼠皮下C6、GL261、U87膠質(zhì)瘤,C57小鼠顱內(nèi)GL261膠質(zhì)瘤以及手術(shù)中人膠質(zhì)瘤在400~900nm波段的光譜曲線均與正常腦組織存在明顯差異。 5.基于R700/R545光譜比值的高光譜成像能清晰顯示離體與在體顱內(nèi)GL261膠質(zhì)瘤區(qū)域,與HE染色顯示的腫瘤區(qū)域比較,光譜比值R700/R545高光譜成像對(duì)腫瘤的識(shí)別精度最高(92.40±2.50%)、高于MRI T2成像(84.39±4.69%)和RGB成像(肉眼,81.93±4.47%)。 結(jié)論: 1.可見(jiàn)近紅外漫反射光譜可鑒別不同組織血紅蛋白濃度、血氧飽和度、結(jié)構(gòu)成分等的差異,從而有效識(shí)別缺血腦組織與膠質(zhì)瘤組織。 2.基于主成分分析的高光譜成像可探測(cè)腦組織的早期缺血;基于R545/R560光譜比值的高光譜成像可實(shí)現(xiàn)缺血區(qū)域的精確定位;基于R700/R545光譜比值的高光譜成像可有效辨別腦膠質(zhì)瘤邊界。 3.高光譜成像可能成為神經(jīng)外科術(shù)中實(shí)時(shí)、無(wú)標(biāo)記、在體探測(cè)與成像缺血腦組織和膠質(zhì)瘤的新方法。
[Abstract]:Background and purpose:
In neurosurgery, it is important to evaluate the blood perfusion status of brain tissue in real time and to distinguish the boundary of malignant tumor for guiding surgery and improving prognosis. Images, which can also analyze the intrinsic signals of the extracts by spectroscopy, may become a new method for real-time guided surgery and precise excision.
In order to study the diffuse reflectance spectra of biological tissues in visible and near infrared bands, the spectra of different absorption and scattering properties of solutions were measured and analyzed. The spectral difference between ischemic brain tissues and normal brain tissues was analyzed. The hyperspectral imaging parameters which can effectively distinguish ischemic brain tissues and gliomas were selected. The image processing algorithm was established to lay a foundation for the clinical application of hyperspectral imaging.
Materials and methods:
1. The near-infrared diffuse reflectance spectra of mixed solution of blood and fat emulsion were measured by optical fiber spectrometer. The spectral curves of different hemoglobin concentration, different oxygen saturation and different fat emulsion concentration were analyzed.
2. The right middle cerebral artery occlusion (MCAO) model of SD rats was established. The visible near-infrared diffuse reflectance spectra of normal and ischemic brain tissues were measured in vivo by optical fiber spectrometer at 1, 3, 6, 12, and 24 h after ischemia. The characteristic spectral differences between ischemic brain tissues and normal brain tissues were analyzed.
3. Spectral imaging of normal and ischemic brain tissues in vitro for 1, 3, 6, 12, and 24 hours was studied with hyperspectral imager and operating microscope. Spectra of normal and ischemic brain tissues were extracted. The hyperspectral images were processed by principal component analysis (PCA) and spectral ratio algorithm, and compared with TTC staining and HE staining.
4. The models of subcutaneous C6, GL261, U87 glioma transplantation in nude mice and intracranial GL261 glioma transplantation in C57 mice were established. The visible near infrared diffuse reflectance spectra of normal brain tissue, subcutaneous C6, GL261, U87 glioma tissue, C57 mice intracranial GL261 glioma tissue and clinical operation patients were measured by optical fiber spectrometer in vivo. The difference of characteristic spectrum between glioma tissue and normal brain tissue.
5. Spectral imaging of GL261 glioma tissue in vitro and in vivo was studied with hyperspectral imager and operating microscope. Spectra of normal brain tissue and glioma were extracted. Hyperspectral images were processed with spectral ratio algorithm, and compared with HE staining, MRI imaging and RGB imaging.
Main results:
1. Hemoglobin has characteristic absorption peaks in 542 nm and 577 nm bands. The changes of spectral curves in 500-600 nm bands can reflect the changes of hemoglobin concentration and blood oxygen saturation, and the spectral curves in 700-900 nm bands can reflect the scattering properties of samples.
2. From 1 hour after ischemia, the spectral characteristics of the infarcted brain tissue in 400-900 nm band were significantly different from that of the normal brain tissue, and the longer the ischemic time (3h, 6h, 12h, 24h) was, the more significant the difference was.
3. The hyperspectral imaging based on principal component analysis can effectively identify the brain tissues at 1h, 3h, 6h, 12h and 24h after ischemia; hyperspectral imaging based on R545/R560 spectral ratio can clearly display the brain tissues at 6h, 12h and 24h after ischemia, and the calculated area (28.09, 50.80, 5.31, 60.95, 6.27mm2) and TTC staining (26.06, 48.68, 4.31, 60.29, 5.96mm2) were highly kissed. Close.
4. The spectral curves of subcutaneous C6, GL261 and U87 gliomas in nude mice, intracranial GL261 gliomas in C57 mice and human gliomas in operation at 400-900 nm were significantly different from those of normal brain tissues.
5. Hyperspectral imaging based on the spectral ratio of R700/R545 can clearly display the region of GL261 glioma in vitro and in vivo. Compared with the tumor region displayed by HE staining, the spectral ratio of R700/R545 hyperspectral imaging has the highest accuracy of tumor identification (92.40+2.50%), higher than MRI T2 imaging (84.39+4.69%) and RGB imaging (naked eye, 81.93+4.47%).
Conclusion:
1. Near infrared diffuse reflectance spectroscopy can distinguish the difference of hemoglobin concentration, oxygen saturation and structural components in different tissues, thus effectively identifying ischemic brain tissue and glioma tissue.
2. Hyperspectral imaging based on principal component analysis can detect early cerebral ischemia; hyperspectral imaging based on R545/R560 spectral ratio can accurately locate the ischemic region; hyperspectral imaging based on R700/R545 spectral ratio can effectively distinguish the boundary of glioma.
3. Hyperspectral imaging may become a new method for detecting and imaging ischemic brain tissues and gliomas in vivo in neurosurgery.
【學(xué)位授予單位】:第三軍醫(yī)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:R739.41

【參考文獻(xiàn)】

相關(guān)期刊論文 前1條

1 李慶利;薛永祺;劉治;;基于高光譜成像技術(shù)的中醫(yī)舌象輔助診斷系統(tǒng)[J];生物醫(yī)學(xué)工程學(xué)雜志;2008年02期



本文編號(hào):2202218

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/shenjingyixue/2202218.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶75b95***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com