天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

非線性混沌理論在腦卒中患者聲音時(shí)間序列中的分析和應(yīng)用

發(fā)布時(shí)間:2018-08-17 14:46
【摘要】:腦卒中是一類高發(fā)病率,高致死率的疾病。在預(yù)測(cè)腦卒中發(fā)生以及在腦卒中患者康復(fù)觀察的過程中,并沒有很好的客觀評(píng)價(jià)方法,只能通過醫(yī)生的臨床經(jīng)驗(yàn)。所以本論文通過結(jié)合人體聲音產(chǎn)生的生理學(xué)特點(diǎn),利用非線性動(dòng)力學(xué)方法分析聲音時(shí)間序列,提取特征量分析腦卒中患者的大腦的損傷狀態(tài),嘗試可以找到度量腦卒中患者大腦狀態(tài)的特征量。為腦卒中患者康復(fù)及預(yù)防提供客觀評(píng)價(jià)。 本文對(duì)腦卒中患者的診斷判別方法進(jìn)行了分析和研究,并最終通過聲音診斷技術(shù)實(shí)現(xiàn)了腦卒中患者和健康人的分類。對(duì)聲音診斷技術(shù)的四個(gè)方面(即腦卒中病人聲音采集、腦卒中病人聲音信號(hào)分析處理、腦卒中患者診斷特征量的構(gòu)造和腦卒中患者分類)進(jìn)行研究探索,并取得了以下研究結(jié)果: 1)提出了通過聲音來研究大腦狀態(tài)的方法,并且從語音產(chǎn)生的神經(jīng)機(jī)制和腦成像機(jī)制的角度對(duì)利用聲音分析大腦狀態(tài)提供了理論上的支撐。并且結(jié)合腦卒中患者實(shí)際情況提出了最適合采集的音節(jié)。 2)提出了基于聲音時(shí)間序列的混沌特性用非線性動(dòng)力學(xué)的方法來分析腦卒中患者的大腦狀態(tài)的方法。對(duì)聲音非線性時(shí)間序列進(jìn)行相空間重構(gòu),分別用互信息法得到的時(shí)間延遲和用改進(jìn)偽最近鄰法得到的CAO方法得到的嵌入維數(shù)重構(gòu)相空間和吸引子。最后用小數(shù)據(jù)法計(jì)算聲音時(shí)間序列的最大Lyapunov指數(shù),提取得到的這些混沌特征量都證明了聲音時(shí)間序列具有混沌特性。 3)首次提出了利用改進(jìn)的替代數(shù)據(jù)法得到一種新的非線性特征量來反映聲音時(shí)間序列的非線性特征,進(jìn)而用于反映腦卒中患者的大腦狀態(tài)。該方法將替代數(shù)據(jù)法和關(guān)聯(lián)維數(shù)相結(jié)合得到了新的非線性特征量即歸一化方差檢測(cè)量。這一新的特征量反映了非線性聲音時(shí)間序列和聲音序列的替代數(shù)據(jù)(不具有混沌特性)在關(guān)聯(lián)維數(shù)上間的差異,比單純的非線性聲音時(shí)間序列的關(guān)聯(lián)維數(shù)更好得反映了腦卒中患者因?yàn)槟X損傷導(dǎo)致的變異聲音的非線性性質(zhì)。 4)對(duì)聲音特征量進(jìn)行模式分類。本文首先對(duì)所有聲音樣本提取聲音特征量,包括互信息圖的第一個(gè)最小值,關(guān)聯(lián)維數(shù),最大Lyapunov指數(shù)以及歸一化方差檢測(cè)量。對(duì)這些特征量按照健康人和腦卒中病人進(jìn)行統(tǒng)計(jì)對(duì)比分析。通過圖表的形式生動(dòng)直觀得看出兩類聲音信號(hào)的差異。然后再利用K近鄰分類方法對(duì)組合特征量進(jìn)行分類,分類結(jié)果表明了新的歸一化方差檢測(cè)量能夠提高分類準(zhǔn)確度,而提取出的非線性特征量可以用于對(duì)腦卒中患者和健康人進(jìn)行分類。這也為以后用聲音時(shí)間序列分析度量大腦狀態(tài)提供了研究方向和基礎(chǔ)。
[Abstract]:Stroke is a kind of disease with high incidence and high mortality. In predicting the occurrence of stroke and in the course of rehabilitation observation of stroke patients, there is no good objective evaluation method, only through the doctor's clinical experience. Therefore, combining the physiological characteristics of human voice production, this paper uses nonlinear dynamic method to analyze the sound time series, and extracts the characteristic quantity to analyze the brain damage state of stroke patients. Try to find characteristic quantities that measure the state of the brain in stroke patients. To provide objective evaluation for the rehabilitation and prevention of stroke patients. In this paper, the diagnosis and discrimination methods of stroke patients were analyzed and studied. Finally, the classification of stroke patients and healthy people was realized by sound diagnosis. In this paper, four aspects of sound diagnosis technology (namely, the sound acquisition of stroke patients, the analysis and processing of sound signals of stroke patients, the construction of diagnostic characteristics of stroke patients and the classification of stroke patients) were studied and explored. The following results are obtained: 1) A method to study the brain state through sound is proposed, and it provides theoretical support for the analysis of brain state by sound from the perspective of the neural mechanism of speech production and the brain imaging mechanism. According to the actual situation of stroke patients, the most suitable syllable is put forward. 2) A method of analyzing the brain state of stroke patients by nonlinear dynamics is proposed based on the chaotic characteristics of sound time series. The phase space reconstruction of sound nonlinear time series is carried out. The time delay obtained by mutual information method and the embedding dimension obtained by CAO method with improved pseudo-nearest neighbor method are used to reconstruct the phase space and attractor respectively. Finally, the maximum Lyapunov exponent of sound time series is calculated by small data method. The extracted chaotic features prove that the acoustic time series have chaotic properties. 3) A new nonlinear feature of sound time series is first proposed by using the improved alternative data method to reflect the nonlinear characteristics of the sound time series. In turn, it is used to reflect the brain state of stroke patients. This method combines the substitution data method and the correlation dimension to obtain a new nonlinear characteristic measure called normalized variance detection. This new feature reflects the difference between the correlation dimension of the nonlinear sound time series and the alternative data of the sound sequence (which does not have chaotic characteristics). The correlation dimension of the time series is better than the correlation dimension of the nonlinear acoustic time series, which reflects the nonlinear characteristics of the variant sound caused by brain injury in stroke patients. 4) the pattern classification of the sound characteristic quantity is carried out. In this paper, sound features are extracted from all sound samples, including the first minimum of mutual information graph, correlation dimension, maximum Lyapunov exponent and normalized variance detection. These characteristics were statistically compared with those of healthy people and stroke patients. The difference between the two types of sound signals can be seen vividly and intuitively through the form of a chart. Then the K-nearest neighbor classification method is used to classify the combined feature quantity. The classification results show that the new normalized variance detection method can improve the classification accuracy. The extracted nonlinear features can be used to classify stroke patients and healthy people. This also provides the research direction and foundation for the measurement of brain state by sound time series analysis.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:R743.3

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王立媛;劉玉萍;肖青;祁金剛;;胎兒心率信號(hào)的替代數(shù)據(jù)分析[J];長(zhǎng)春理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年01期

2 顏景斌;;基于連續(xù)小波和支持向量機(jī)的病態(tài)嗓音檢測(cè)[J];電腦與信息技術(shù);2008年03期

3 洪時(shí)中;非線性時(shí)間序列分析的最新進(jìn)展及其在地球科學(xué)中的應(yīng)用前景[J];地球科學(xué)進(jìn)展;1999年06期

4 何俊;李艷雄;賀前華;李威;;變異特征加權(quán)的異常語音說話人識(shí)別算法[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年03期

5 于燕平;胡維平;;病態(tài)嗓音特征的小波變換提取及識(shí)別研究[J];計(jì)算機(jī)工程與應(yīng)用;2009年22期

6 楊志安,王光瑞,陳式剛;用等間距分格子法計(jì)算互信息函數(shù)確定延遲時(shí)間[J];計(jì)算物理;1995年04期

7 劉晨軒;藍(lán)賢桂;;語音信號(hào)短時(shí)分析算法研究與實(shí)現(xiàn)[J];價(jià)值工程;2012年12期

8 魏春生,陳鋒,王薇;國(guó)際音標(biāo)鈋和a:的選擇對(duì)聲學(xué)測(cè)試參數(shù)的影響[J];臨床耳鼻咽喉科雜志;1999年03期

9 侯麗珍,韓德民,徐文,張麗;嗓音檢測(cè)中元音聲樣的選擇[J];聽力學(xué)及言語疾病雜志;2002年01期

10 王修信,胡維平,梁冬冬,姚鐵鈞,許愛華,曾思恩;基于小波變換的相對(duì)信噪比在喉疾病檢測(cè)中的意義[J];聽力學(xué)及言語疾病雜志;2002年04期

,

本文編號(hào):2187979

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/shenjingyixue/2187979.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶60f6f***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
日韩国产亚洲欧美另类| 亚洲专区一区中文字幕| 黄色片一区二区在线观看| 四季av一区二区播放| 免费精品一区二区三区| 在线免费国产一区二区三区| 隔壁的日本人妻中文字幕版| av国产熟妇露脸在线观看| 91日韩欧美中文字幕| 国产又大又黄又粗又免费| 日韩中文字幕狠狠人妻| 成年午夜在线免费视频| 欧美同性视频免费观看| 男人操女人下面国产剧情| 精品亚洲一区二区三区w竹菊| 免费观看在线午夜视频| 国产白丝粉嫩av在线免费观看| 日韩中文无线码在线视频 | 黑人粗大一区二区三区| 日韩不卡一区二区在线| 极品熟女一区二区三区| 精品久久少妇激情视频| 日韩一区二区三区嘿嘿| 婷婷九月在线中文字幕| 欧美熟妇喷浆一区二区| 激情综合五月开心久久| 中文字幕乱子论一区二区三区 | 欧美在线观看视频免费不卡| 欧美一区二区三区播放| 久久久精品区二区三区| 日本东京热视频一区二区三区| 久久综合日韩精品免费观看| 福利一区二区视频在线| 男人大臿蕉香蕉大视频| 国产伦精品一区二区三区精品视频 | 亚洲av又爽又色又色| 一二区中文字幕在线观看| 欧美性高清一区二区三区视频| 99少妇偷拍视频在线| 久久少妇诱惑免费视频| 熟妇久久人妻中文字幕|