面部三維運動定量分析系統(tǒng)的研制及面部三維測量指標研究
[Abstract]:The first part is the development of the quantitative analysis system for facial 3D motion and its precision measurement. The quantitative analysis system for facial 3D motion consists of three parts: data acquisition, data processing and output, and fixed system. The key part of the data processing section is a customized facial motion capture software. The fixing system includes a fixed headframe and a comprehensive fixed chair, both of which can be fixed to the bilateral mastoid and occipital protuberances. The fixing system ensures relative stillness with the skull without shadow. The front end of the fixing system has three fixed markers for the reference coordinate system of facial analysis. In facial motion measurement, the camera captures the reflected light of the face, the system carries out coordinate transformation according to the calibration results, the software carries out on-line calculation and off-line reconstruction. The maximum error of velocity measurement is 0.0058m/s, the average error is 0.003026m/s, and the acceleration error is 0.000135m/s 2. Part 2: The influencing factors of facial three-dimensional measurement indicators Objective: To evaluate the application of facial three-dimensional motion quantitative analysis system in facial paralysis patients and explore the influencing factors of measurement indicators. Seventy-six patients with unilateral paralysis were collected in succession.Static and dynamic measurements were performed using a three-dimensional motion quantitative analysis system.The measurement process was as follows:clean face_sticking markers_subject movement training_system setting and placement.Partial correlation analysis was made between the measurement results and age.Differences between male and female indicators were compared.Factorial variance scores were calculated with normal values. Results: 1. Static indices of healthy side: length of nasolabial sulcus (0.517) was positively correlated with age, and canthus angle was negatively correlated with age (gamma = - 0.424). Except for laughing angle, the remaining indices were statistically different between men and women (P < 0.05), and the measured values of men were more than those of women. There were statistical differences between healthy side and normal value except laughing angle (P < 0.05). The maximum velocity of eyebrow arch midpoint (r = - 0.428), upper eyelid midpoint (= r = - 0.495) and paranasal point (r = - 0.471) was negatively correlated with age, but no significant correlation was found with other parameters. Constant comparison: the maximum moving speed of the middle point of the upper eyelid, the maximum moving speed and acceleration of the midpoint of the eyebrow arch, the maximum moving speed and acceleration of the paranasal point, the maximum moving distance of the mouth angle, the speed and acceleration, and the change of the canthus angle were all greater in the group of facial paralysis than in the normal group (P < 0.05). 3. Static index of the affected side: EEG was used as the control variable for partial correlation. The results showed that the length of nasolabial sulcus (r = 0.538), the distance between the left and right corners of mouth (r = 0.353) were positively correlated with age (r = 0.538), and the canthus angle (r = - 0.349) was negatively correlated with age. Conclusion: (1) The quantitative analysis system of facial three-dimensional movement can quickly evaluate the situation of facial paralysis, and can evaluate the process of patients without pain and trauma. (2) Facial static knot. (3) Most of the dynamic and static indexes were higher in males than in females, but this difference may be reduced in facial paralysis. (4) The motor function of healthy side of patients with facial paralysis may increase compensatively. Objective: To compare the correlation between facial three-dimensional motion quantitative analysis system and other facial paralysis evaluation systems and the prognostic value of each system.Methods: (1) 50 patients with unilateral paralysis were included. The patients were assessed by electrogram, the Chinese version of FaCE scale was used for self-evaluation, and the facial three-dimensional motion quantitative analysis system was used for three-dimensional objective measurement to calculate the symmetry between the affected side and the healthy side. At last, the correlation between the results of different evaluation systems and three-dimensional measurements was compared. (2) Patients with acute facial paralysis within 1 month of onset were included in the study, and their electrophysiological measurements, subjective evaluation, three-dimensional motion quantitative analysis and patient self-evaluation (FaCE) were performed. All patients were followed up for 1 month and 6 months. The evaluation value of each evaluation system was compared according to the recovery of facial paralysis after the onset of the disease. The correlation coefficients between the three-dimensional measurement score and the subjective evaluation system scores were - 0.630 (HB grade), - 0.728 (Facial Nerve Scale 2.0), 0.697 (Sunnybrook score) and 0.617 (Fisch score). The P values were < 0.05. The correlation between 3-D dynamic measurements and blink reflex was stronger than that of ENoG. The correlation between 3-D facial measurements and blink reflex amplitude was stronger than that of incubation period. Compared with ENoG, the correlation between the maximum moving distance of each marker was different. 2. 37 patients with unilateral paralysis were included. Multivariate regression analysis screened the best prognostic indicators: (1) ENoG was the best prognostic indicator within 30 days of facial paralysis, and its predictive formula y = 113.527-60.558x, in which y was the SFGS score after six months, and X was the ratio of facial nerve degeneration estimated by ENoG; (2) SFGS score and three-dimensional measurement were the best prognostic indicators within 31 to 60 days of facial paralysis. The predictive formula was y = 19.202 + 0.557x1 + 0.531x2, X1 was SFGS score, and X2 was three-dimensional measurement index score. Conclusion: (1) There was a good correlation between quantitative analysis of facial three-dimensional motion and traditional subjective evaluation and electrophysiological examination results, and it could provide more detailed quantitative indicators. (2) In acute facial paralysis, electrical measurements were performed. Physiological examination is still the best index for predicting the prognosis of facial paralysis. If facial paralysis lasts for more than one month, the combination of subjective evaluation and three-dimensional quantitative exercise analysis can provide the best prognostic evaluation.
【學位授予單位】:北京協(xié)和醫(yī)學院
【學位級別】:博士
【學位授予年份】:2016
【分類號】:R745.12
【相似文獻】
相關期刊論文 前10條
1 王海明;蔣暉;趙衛(wèi)東;程勇泉;陳建庭;;脊柱三維運動和畸形描述方法的比較研究[J];中國臨床解剖學雜志;2013年03期
2 徐國徽,楊年峰,王人成,王季軍,黃昌華;人手三維運動檢測系統(tǒng)[J];生物醫(yī)學工程學雜志;2000年03期
3 孫正;郁道銀;姜浩作;;冠狀動脈的三維運動特征提取[J];北京生物醫(yī)學工程;2006年04期
4 薛文東,Oskar Schmid,戴\戎;足三維運動的熱塑標志測量法[J];醫(yī)用生物力學;2003年01期
5 張春禮,王軍,徐新智,王全平,陸裕樸;一種視頻圖像微機分析三維運動檢測系統(tǒng)[J];生物醫(yī)學工程學雜志;1994年04期
6 李鑒軼;焦培峰;張美超;聶蘭英;趙衛(wèi)東;;脊柱在體三維運動檢測系統(tǒng)的建立[J];南方醫(yī)科大學學報;2006年12期
7 高建新,曹陽,丁祖泉,方如華;用投影散斑立體攝影法測量人體關節(jié)的三維運動[J];醫(yī)用生物力學;1998年01期
8 杜仕騫;黃學進;李晉川;鄒遠文;;脊柱三維運動離體實驗加載技術研究進展[J];實驗科學與技術;2012年03期
9 程黎明,俞光榮,蔡宣松,梅炯,鐘世鎮(zhèn),朱青安;下頸椎運動的測量與分析[J];同濟大學學報(醫(yī)學版);2003年01期
10 李晶;趙海燕;;三維圖像分割在醫(yī)學整形方面的應用[J];中國醫(yī)療設備;2010年09期
相關會議論文 前9條
1 李立峰;谷慧茹;;三維運動捕捉康復診療評估信息系統(tǒng)的探討[A];中國生物醫(yī)學工程進展——2007中國生物醫(yī)學工程聯(lián)合學術年會論文集(下冊)[C];2007年
2 吳延禧;方興;;于文革投擲鐵餅的三維運動分析[A];第六屆全國運動生物力學學術會議論文摘要匯編[C];1988年
3 岳衛(wèi)亞;;人體三維運動影像解析環(huán)節(jié)角的概念與計算方法[A];第十三屆全國運動生物力學學術交流大會論文匯編[C];2009年
4 張健;潘永剛;;對我國優(yōu)秀女子鐵餅運動員肩、髖角變化的三維運動學分析[A];第十四屆全國運動生物力學學術交流大會論文集[C];2010年
5 吳澤兵;;三牙輪鉆頭三維嚙合計算與運動仿真[A];'2006系統(tǒng)仿真技術及其應用學術交流會論文集[C];2006年
6 谷成;喬華強;;三維環(huán)發(fā)經濟模式[A];2007中國可持續(xù)發(fā)展論壇暨中國可持續(xù)發(fā)展學術年會論文集(4)[C];2007年
7 鄭偉龍;李林安;;三維立體測量在生物力學中的應用[A];中國力學大會——2013論文摘要集[C];2013年
8 徐曉冰;陳紅林;朱培申;;應用BAM算法對三維運動目標的決策分類[A];1994中國控制與決策學術年會論文集[C];1994年
9 盧明臻;高思田;施玉書;杜華;崔建軍;;精密小角擺三維氣浮工作臺的研究[A];2009中國儀器儀表與測控技術大會論文集[C];2009年
相關重要報紙文章 前2條
1 ;東方新銳 讓三維運動捕捉實時化[N];中國計算機報;2003年
2 蔡濤 關景火 李德華;塑造“面子”[N];計算機世界;2002年
相關博士學位論文 前10條
1 王化平;微納操作機器人細胞三維組裝方法研究[D];北京理工大學;2015年
2 趙楊;面部三維運動定量分析系統(tǒng)的研制及面部三維測量指標研究[D];北京協(xié)和醫(yī)學院;2016年
3 李軍;三維GIS空間數(shù)據(jù)模型及可視化技術研究[D];中國人民解放軍國防科學技術大學;2000年
4 陳成;基于視頻的人體三維運動恢復相關技術研究[D];浙江大學;2009年
5 張春森;序列立體圖象三維運動物體定位與跟蹤[D];武漢大學;2004年
6 杜鵬;可變形物體的三維統(tǒng)計可變形模型構建及其在物體重建和運動識別中的應用[D];中國科學技術大學;2011年
7 金剛;三維掃描儀中三維信息獲取理論與技術研究[D];華中科技大學;2002年
8 黃文清;基于單目視覺的非剛體三維運動分析[D];浙江大學;2007年
9 葉煥倬;三維運動目標的數(shù)據(jù)組織與管理[D];武漢大學;2004年
10 禹明忠;PTV技術和顆粒三維運動規(guī)律的研究[D];清華大學;2002年
相關碩士學位論文 前10條
1 史新卓;單目圖像的上半身人體三維姿態(tài)重構研究[D];上海交通大學;2015年
2 高海濤;激光智能識別分揀系統(tǒng)關鍵技術研究[D];河北工業(yè)大學;2015年
3 閆曉萌;基于稀疏逼近的非剛體三維運動重建研究[D];浙江理工大學;2016年
4 蘭太壽;電磁式電器三維測試系統(tǒng)設計及三維動態(tài)特性研究[D];福州大學;2014年
5 鐘卓;重磁正反演的三維可視化方法研究[D];東北師范大學;2011年
6 高岑;三維全身掃描系統(tǒng)中空間信息獲取的研究[D];華中科技大學;2007年
7 楊小冬;三維運動聲音在機載告警系統(tǒng)中的應用[D];電子科技大學;2006年
8 劉卉;三維人物動畫關鍵技術的研究與實現(xiàn)[D];中南大學;2012年
9 胡畔;基于單一二維照片的三維模型重建研究[D];上海交通大學;2015年
10 呂濤;道路交通事故三維再現(xiàn)系統(tǒng)的設計與開發(fā)[D];四川師范大學;2009年
,本文編號:2176275
本文鏈接:http://sikaile.net/yixuelunwen/shenjingyixue/2176275.html