胚胎脊髓細(xì)胞“寄養(yǎng)”遠(yuǎn)端神經(jīng)促進(jìn)延期神經(jīng)修復(fù)后軸突再生
[Abstract]:The peripheral nerve especially the brachial plexus and other proximal nerve injuries, because the injured part is far away from the target organ and the axon regeneration speed is slow, the distal nerve and the muscle are in the denervated state for a long time, and the chronic denaturation and fibrosis will occur, and the function recovery is affected by the normal nerve "sending" the distal nerve to make the target organ of the denervated in time. It has been reported and our previous study found that the transplantation of embryonic neural stem cells to the distal nerve of the injured peripheral nerve can survive, develop into the deity element, and emit the axon to control the distal muscles and reduce the distal muscles. Therefore, on the basis of previous studies, we use the rat tibial nerve injury as an experimental animal model to study whether the distal nerve distal to the distal target organ can reduce the chronic denaturation of the distal target organ degenerative nerve in the transplanted embryonic spinal cord cells, and the distal denervation of the distal nerve is again after the end of the cell "foster". Can the cell "foster" promote axonal regeneration and function recovery after delayed nerve repair? The first part of the cultured embryonic spinal cord cells transplanted to the peripheral nerve survival and differentiation. [Objective] the transplantation of neural stem cells in vitro to the injured peripheral nerve can survive and axon growth and prevent denervation. In this experiment, the survival and differentiation of embryonic spinal cord cells with different culture times were transplanted to the distal end of the injured nerve. [Methods] the embryonic spinal cord tissue of transgenic rats (GFP) of 13.5 days of pregnancy was taken to prepare the embryonic spinal cord cell suspension (P0), and then cultured for 3 days (P1) and continuously cultured to the P3 generation. Before transplantation, the cell components were identified in vitro. Another 30 was obtained. In only SD female rats, the tibial nerve was cut off and the distal denaturation was 7 days later. The animals were randomly divided into 3 groups. The animals were injected with P0, P1, and P3 cells to the distal tibial nerve respectively. The survival and differentiation of the cells were identified by immuno histochemical staining in the ganglion segment of the transplanted region for 3 months. [results] the results of in vitro identification showed the large part of the primary embryonic spinal cord cells. The percentage of neuron precursor cells gradually decreased and the proportion of GFAP positive glial cells increased with the increase of the number of passages, and the result of cell transplantation three months after transplantation was consistent with the results in vitro: the proportion of NEUN and CHAT in the surviving cells decreased gradually as the number of passages increased. [Conclusion] the embryonic spinal cord cells are rich in neurons and neuron progenitor cells. With the increase of the number of passages, the proportion of neurons decreases gradually. Therefore, the best use of the primary embryonic spinal cord cells to the injured nerve distal to the injured nerve cells. The effect of "mailing" on the second part of the embryonic spinal cord cells on the chronic degeneration of the distal nerve and muscle [Objective] previous studies have shown that the transplantation of primary embryonic spinal cord cells to the premodified distal peripheral nerve can survive and have a higher proportion of neurons. This part further studies the effect of the distal nerve and muscle degeneration of the distal nerve to the distal nerve of the 1. transplanted embryonic spinal cord cells with "foster" injury; 2. excision of the cell transplantation area, The functional state of Schwann cells in the distal nerve after "foster" was completed. [Methods] 30 SD female rats were taken, and the tibial nerve was cut and denatured for 7 days, and randomly divided into 2 groups: cell transplantation "foster" group: injection of primary embryonic spinal cord cells (100 thousand /ul) to the distal tibial nerve. The control group was injected with equal amount of nerve culture to the same site. Rats were fed to the same area. In March, 10 rats in each group were treated with electrophysiology, distal nerve electron microscopy, muscle HE, and immunofluorescence staining. The difference between the two groups of axon counts, gastrocnemius muscle atrophy, neurotrophic factor and myelin protein expression were compared. The remaining 5 rats in each group were reoperated, the experimental group excised the 5mm nerve in the cell transplantation area, and the control group excised the same position nerve. After 2 weeks, the distal nerve DNF and myelin protein were detected and compared between the two groups. [results] the regenerative axons were seen in the distal segment of the nerve in the experimental group. The extent of the gastrocnemius muscle atrophy was lighter, the regenerative nerve innervated motor endplate was seen, the electrical stimulation produced the action potential, and the control group had no regeneration of the distal segment nerve. Myelinated nerve fibers, gastrocnemius atrophy obvious, no innervated motor endplate, electrical stimulation without action potential. The expression of two groups of neurotrophic factors BDNF, GDNF, NGF, NT-3 was not significantly different; the expression of myelin protein in the experimental group was significantly higher than that in the control group; after the end of "mailing", the expression level of myelin protein in the experimental group decreased. [Conclusion] the expression level of the management culture factor BDNF, GDNF is significantly increased. [Conclusion] the transplanted embryonic spinal cord cells "foster" injury of the distal tibial nerve, the transplanted cells can survive, develop into neurons and motor neurons, send out axons, establish a functional neuromuscular junction with the muscles, and reduce the chronic degenerative nerve and muscle denaturation of the distal nerve. After "foster", the distal nerve is degenerated again, and the expression of a variety of neurotrophic factors increases. The third part: the "foster" distal nerve of the embryonic spinal cord cells promote the regeneration of the axon after the delayed nerve repair [Objective] to study whether the distal nerve of the transplanted embryonic spinal cord cells "foster" injured injured nerve can promote the delayed repair of the nerve. Axonal regeneration and functional recovery. [Methods] 20 SD female rats were divided into 2 groups randomly. After 7 days of predegeneration, the animals were randomly divided into 2 groups. The experimental group and the control group were treated with the same experiment for two.3 months, reoperation, the experimental group excised the 5mm tibial nerve in the cell transplantation area, the control group excised the tibial nerve, the distal tibial nerve and the general peroneal cutting of the same side of the same side. The proximal end suture of the nerve was performed. After the animals were raised in March, the fluorescent gold retrograde labeling, electrophysiological examination, neural electron microscopy and muscle staining were used to compare the number of spinal motor neurons in the experimental group and the control group, the count of the myelinated nerve fibers in the far segment and the recovery of the muscle electrophysiological function. [results] the proximal and cross suture of the tibial nerve in the peroneal nerve. 3 months after the distal operation, the number of neurons regenerated in the spinal cord in the experimental group, the count of the axons in the distal nerve, the wet weight of the gastrocnemius and the electrophysiological results were superior to those of the control group, and the difference was statistically significant. Muscle function recovery.
【學(xué)位授予單位】:福建醫(yī)科大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:R745
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡建國,陸佩華,徐曉明;中樞神經(jīng)系統(tǒng)軸突再生抑制蛋白[J];生理科學(xué)進(jìn)展;2004年04期
2 張宏志;馮世慶;;抗神經(jīng)再生抑制因子促進(jìn)軸突再生的研究進(jìn)展[J];中國脊柱脊髓雜志;2008年02期
3 王養(yǎng)華;許衛(wèi)紅;;髓鞘相關(guān)抑制因子在中樞神經(jīng)系統(tǒng)軸突再生中的作用[J];醫(yī)學(xué)綜述;2012年09期
4 徐浩梁;中樞神經(jīng)系統(tǒng)軸突再生的幾個問題[J];中國脊柱脊髓雜志;1991年02期
5 梁克玉;電場與脊髓軸突再生[J];臨床外科雜志;1995年05期
6 景筠,Nina Irwin,Larry I.Benowitz;肌苷調(diào)節(jié)視網(wǎng)膜節(jié)細(xì)胞軸突再生[J];眼科研究;2000年03期
7 梁克玉;;非甾體抗炎藥尼美舒利的新用途——促進(jìn)脊髓軸突再生[J];中醫(yī)正骨;2009年01期
8 武麗;張麗萍;張曼;夏猛;;中樞神經(jīng)軸突再生的細(xì)胞內(nèi)信號轉(zhuǎn)導(dǎo)機(jī)制研究進(jìn)展[J];時(shí)珍國醫(yī)國藥;2012年02期
9 楊哲;;促使中樞神經(jīng)系統(tǒng)軸突再生的生長相關(guān)蛋白[J];國外醫(yī)學(xué)情報(bào);1985年22期
10 唐曉軍;李貴濤;陳為堅(jiān);羅狄鑫;黃文填;;脊神經(jīng)后根軸突再生研究及應(yīng)用前景[J];中國矯形外科雜志;2009年09期
相關(guān)會議論文 前7條
1 沈慧勇;吳燕峰;唐勇;陳燕濤;程志安;;低溫保存嗅神經(jīng)鞘細(xì)胞移植對脊髓軸突再生的影響[A];第八屆全國骨科新進(jìn)展、新技術(shù)學(xué)習(xí)班講義匯編[C];2005年
2 鄧宇斌;吳洪福;;水凝膠遞送Lingo-1 RNAi對脊髓損傷神經(jīng)軸突再生的作用及機(jī)制研究[A];中國病理生理學(xué)會第十三屆腫瘤、第十四屆免疫專業(yè)委員會學(xué)術(shù)會議論文集[C];2012年
3 丁月彤;馮佳;吳武田;周立兵;;皮質(zhì)脊髓束遺傳缺失小鼠脊髓前角運(yùn)動神經(jīng)元軸突再生和功能恢復(fù)[A];中國解剖學(xué)會2013年年會論文文摘匯編[C];2013年
4 張棟棟;;Rho抑制劑促進(jìn)脊髓損傷小鼠脊髓軸突再生的研究[A];第七屆全國創(chuàng)傷學(xué)術(shù)會議暨2009海峽兩岸創(chuàng)傷醫(yī)學(xué)論壇論文匯編[C];2009年
5 毛倫林;程堅(jiān);管陽太;;PTEN抑制劑bpv對腦缺血再灌注損傷小鼠軸突再生和功能康復(fù)的影響[A];2012中國醫(yī)師協(xié)會中西醫(yī)結(jié)合醫(yī)師分會神經(jīng)病學(xué)專家委員會學(xué)術(shù)年會論文匯編[C];2012年
6 林森;梁亞杰;郭強(qiáng);周紅利;張吉強(qiáng);邊晨;文燦;張艷玲;熊鷹;李淑蓉;蘇炳銀;;TRIF調(diào)控視神經(jīng)再生及機(jī)制[A];中國解剖學(xué)會2011年年會論文文摘匯編[C];2011年
7 周松林;于彬;王勇軍;顧曉松;丁斐;;miR-21在坐骨神經(jīng)軸突再生修復(fù)中的作用機(jī)制[A];中國解剖學(xué)會2011年年會論文文摘匯編[C];2011年
相關(guān)重要報(bào)紙文章 前2條
1 記者 張曄 王燕寧;治愈癱瘓不再是夢想[N];科技日報(bào);2008年
2 本報(bào)記者 殷俊;南醫(yī)大神經(jīng)再生機(jī)制研究獲重大突破[N];江蘇科技報(bào);2008年
相關(guān)博士學(xué)位論文 前10條
1 郭佳;Fibulin-5對MCAO/再灌注大鼠血腦屏障和軸突再生的影響及機(jī)制探討[D];重慶醫(yī)科大學(xué);2015年
2 周恒星;慢病毒載體介導(dǎo)siRNA沉默PTPσ基因促進(jìn)大腦皮層神經(jīng)元軸突再生及脊髓損傷修復(fù)的實(shí)驗(yàn)研究[D];天津醫(yī)科大學(xué);2014年
3 殷成;載脂蛋白E與神經(jīng)元損傷和軸突再生相關(guān)機(jī)制研究[D];重慶醫(yī)科大學(xué);2012年
4 田曦亮;基于微流控技術(shù)平臺的骨髓間充質(zhì)干細(xì)胞分選、誘導(dǎo)并促進(jìn)軸突再生的實(shí)驗(yàn)研究[D];大連醫(yī)科大學(xué);2013年
5 向強(qiáng);E3B1基因的表達(dá)調(diào)控與軸突再生的相關(guān)性研究[D];第三軍醫(yī)大學(xué);2008年
6 張伯寅;GSK3信號分子在神經(jīng)細(xì)胞軸突再生中作用的研究[D];吉林大學(xué);2014年
7 李軍;周圍神經(jīng)損傷后雪旺細(xì)胞與軸突再生關(guān)系的實(shí)驗(yàn)研究[D];吉林大學(xué);2008年
8 白永生;Fibulin-5對大鼠缺血再灌注腦損傷后腦水腫和軸突再生的影響及機(jī)制研究[D];重慶醫(yī)科大學(xué);2014年
9 葛巖;TGFβ信號通路在小鼠視網(wǎng)膜神經(jīng)節(jié)細(xì)胞軸突再生過程中作用的實(shí)驗(yàn)研究[D];吉林大學(xué);2009年
10 白撫生;Chondroitinase和Clenbuterol治療可促進(jìn)成年大鼠脊髓損傷后軸突再生及運(yùn)動功能恢復(fù)[D];中國醫(yī)科大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 張文彬;加味黃芪桂枝五物湯在胸腰段脊髓損傷中的應(yīng)用及機(jī)制研究[D];福建中醫(yī)藥大學(xué);2015年
2 原文琦;坐骨神經(jīng)預(yù)損傷通過miR-17-5p/STAT3/GAP-43通路促進(jìn)初級感覺神經(jīng)元軸突再生的實(shí)驗(yàn)研究[D];天津醫(yī)科大學(xué);2016年
3 唐曉軍;脊神經(jīng)后根吻合軸突再生重建感覺傳入通路的實(shí)驗(yàn)研究[D];南華大學(xué);2010年
4 劉志峰;臂叢損傷后遠(yuǎn)側(cè)段神經(jīng)慢性變性對軸突再生及肌肉功能恢復(fù)的影響[D];福建醫(yī)科大學(xué);2014年
5 吳韜韜;ROCK Ⅱ特異抑制性小分子多肽促進(jìn)大鼠脊髓損傷后軸突再生與神經(jīng)功能恢復(fù)的實(shí)驗(yàn)研究[D];瀘州醫(yī)學(xué)院;2012年
6 屈一鳴;ROCKII特異抑制性小分子多肽促進(jìn)新生大鼠DRGN_s軸突再生的體外實(shí)驗(yàn)研究[D];瀘州醫(yī)學(xué)院;2011年
7 范紅石;夾脊電針結(jié)合神經(jīng)松動術(shù)對兔坐骨神經(jīng)損傷后軸突再生及血清P50、P65的影響[D];黑龍江中醫(yī)藥大學(xué);2015年
8 朱宗波;Rho/ROCKⅡ特異抑制性小分子多肽與TDZD-8促進(jìn)脊髓損傷后軸突再生的對比實(shí)驗(yàn)研究[D];瀘州醫(yī)學(xué)院;2012年
9 黃貽澤;聯(lián)合應(yīng)用Rho-ROCKⅡ及GSK-3β抑制劑促進(jìn)新生大鼠DRGNs軸突再生的體外實(shí)驗(yàn)研究[D];瀘州醫(yī)學(xué)院;2009年
10 王敬;腺病毒介導(dǎo)的RNAi對缺血再灌注大鼠腦內(nèi)NgR表達(dá)、軸突再生和神經(jīng)行為的影響[D];重慶醫(yī)科大學(xué);2009年
,本文編號:2170327
本文鏈接:http://sikaile.net/yixuelunwen/shenjingyixue/2170327.html