內(nèi)皮源性NO介導(dǎo)的低氧信號(hào)啟動(dòng)星形膠質(zhì)細(xì)胞低氧代償?shù)臋C(jī)制研究
[Abstract]:Objective: the brain is most sensitive to hypoxia. Hypoxia can lead to brain edema and nerve cell damage, which seriously affect the brain function. For different degrees of hypoxia (hypoxic hypoxia), the brain will show different degrees of nerve dysfunction, such as acute severe anoxia, which will lead to headache, irritability, convulsion, coma and even death; chronic moderate deficiency. Oxygen will cause symptoms such as fatigue, lethargy, concentration of attention, and decline in memory; while mild and early anoxic hypoxia can provide sufficient oxygen supply and energy substrates for neurons to maintain normal physiological functions of the brain and study mild hypoxia at the time of hypoxic hypoxia. Under conditions, the compensatory hypoxic protection mechanism of the central nervous system (CNS) is of great significance for the prevention and treatment of hypoxic hypoxic brain damage. The.CNS structure and function are complex, and the neurovascular units (NVU) is the smallest structure and function unit. The model is mainly from the brain microvessel and the star. Astrocytes and neurons are constructed together. Astrocytes are located at the center of NVU material transport and information transfer, acting as a link between neurons and microvessels. When the astrocytes feel the oxygen supply is reduced, it can start compensatory hypoxic protection reverse, including reducing glucose oxygen oxidation and increasing no oxygen. Oxygen glycolysis, reduce oxygen consumption, promote the transport of glucose and lactic acid, release angiogenesis factors and so on. It is an important compensatory mechanism to maintain normal physiological function of neurons. According to the characteristics of NVU structure, brain microvascular endothelial cell (BMEC) is closely associated with blood. It is astrocytes and neurons. Therefore, it is undoubtedly of more important physiological significance to maintain the normal physiological function of neuron cells before the oxygen supply is reduced in astrocytes. In the case of hypoxia, BMEC first feels the reduction of blood oxygen pressure and causes a series of blood vessels. The system compensatory hypoxic protection reaction, and the most important and fastest way of compensation is the increase of local tissue oxygen supply through the role of diastolic blood vessels. This process is that endothelial cells release nitric oxide (nitric oxide, NO) and spread to vascular smooth muscle cells and activate diastolic blood by activating soluble guanosine cyclase (s GC). Whether or not the NO can continue to spread to other adjacent cells and play the corresponding physiological functions and effects, it is necessary to further explore.NO as an important cell messenger, participate in various physiological or pathological processes of the body, and play an important biological role in the body's cardiovascular system, the nervous system and the immune system. In addition to the effect of diastolic blood vessels, NO also participates in the regulation of the stability of the hypoxia inducible factor -1 alpha (hypoxia-inducible factor-1 a, HIF-1 alpha), blocking the activity of the PHD enzyme by interfering with the binding of Fe2+ to the prolyyl hydroxylase (PHD) and blocking the degradation of the HIF-1 alpha, and can also induce the expression of the HIF-1 alpha by PI3K/Akt/m TOR signal pathway. In view of the fact that NO molecules can regulate the stability and expression level of HIF-1 alpha and are important endogenous cell messenger molecules, it is undoubtedly an ideal hypoxia signal transduction molecule, so we use NO molecules as an important regulator of non oxygen and information molecules to carry out the study of hypoxia signal transduction. Since mild hypoxia, BMEC release NO can be used as a hypoxic signal to spread to vascular smooth muscle cells to produce diastolic blood vessels, then can the NO released by BMEC continue to spread to adjacent astrocytes and activate compensatory hypoxic protection by HIF-1 alpha in the absence of hypoxia? Primary astrocytes and primary BMEC were used to explore the oxygen threshold concentration in the brain astrocytes, and the study of NO preconditioning for exogenous drug delivery and co culture of BMEC derived release under this hypoxia condition could block the degradation of HIF-1 alpha protein in astrocytes, as well as glucose metabolism and anaerobic glycolysis, The transcriptional and expression regulation of glucose and lactic acid transport, angiogenesis and other related genes, simultaneously control NO or inhibit NO production, and combine with RNAi technology to interfere with HIF-1 alpha gene transcription, explore how NO- hypoxia signal mediates the hypoxic protective response of astrocytes in brain astrocytes, in order to clarify the hypoxia signal conduction mediated by BMEC derived NO. The mechanism of activating the hypoxic protective reaction of astrocytes in the brain was initiated to lay the foundation for further study on the pathogenesis and protective measures of hypoxic hypoxic brain injury. Methods: the first part of the rat brain astrocytes, the primary separation culture and identification of the cerebral microvascular endothelial cells were isolated and cultured for the isolation and culture of the primary astroglia. Cell and cell identification: the rat brain astrocytes were isolated and cultured with one step enzyme digestion and oscillatory purification. Immunofluorescence staining was used to detect the expression of GFAP in the identification of astrocytes. 2. the isolation and culture of primary cerebral microvascular endothelial cells and cell identification: two step enzyme digestion, gradient density centrifugation and purinamycin Purified rat brain microvascular endothelial cells were isolated and cultured; immunofluorescence staining was used to detect the expression of V WF related antigen in the identification of cerebral microvascular endothelial cells. Second the experimental study on the initiation of hypoxic protective reaction of mild hypoxic astrocytes by exogenous NO; 1. different oxygen concentration conditions for the primary astroglia Effect of cellular HIF-1 alpha protein level: Western blot detection of astrocytes HIF-1 alpha protein level in 21%, 9%, 7%, 5%, 3% and 1% oxygen concentrations to obtain oxygen threshold concentration in astrocytes without hypoxia; the effect of DETA (NO donor) on the level of HIF-1 a protein of primary astrocytes under mild 2.5%O_2: West Ern blot was used to detect the HIF-1 alpha protein level of astrocytes in DETA after different doses of treatment and different processing time; DETA gene, glucose and lactic acid transporter gene, VEGF gene transcription level, VEGF protein table under mild hypoxia in 3.5%O_2 RT-q PCR detection of PDK1, LDHA, LDHB, HK1, HK2, GLUT1, GLUT3, LDHB, GLUT1, GLUT3, RT-q PCR The effect of DETA on glucose metabolism related enzyme gene, glucose and lactic acid transporter gene, VEGF gene transcriptional level, VEGF protein expression level and LAC release level in the brain astrocytes of primary astrocytes after HIF-1 alpha gene transcription: HIF-1 alpha specific Si RNA interfering with the original brain astrocytes. HIF-1 alpha gene transcription of glial cells, RT-q PCR and Western blot identification of cell transfection efficiency, RT-q PCR detection of PDK1, LDHA, HK1, HK2, and transcriptional level after DETA treated astrocytes An experimental study on the initiation of hypoxic protective reaction of mild hypoxic astrocytes in the third part of cerebral microvascular endothelial cell derived NO, the release level of NO in primary cerebral microvascular endothelial cells and primary brain astrocytes under mild hypoxic conditions in 1.5%O_2: fluorescence analysis for the detection of cerebral microvascular endothelial cells and astrocytes respectively Nitrite/Nitrate level in the culture medium; the effect of NO on the level of HIF-1 alpha protein of primary brain astrocytes under mild hypoxic 2.5%O_2: Transwell culture plate was used to co culture the primary cerebral microvascular endothelial cells and the primary astrocytes, and the Western blot was used to detect the astrocytes after the culture of the brain astrocytes. The level of cell HIF-1 alpha protein; the effect of NO on glucose metabolism related enzyme gene, glucose and lactic acid transporter gene, VEGF gene transcription level, VEGF protein expression level and LAC release level of primary brain astrocytes under mild hypoxic condition of 3.5%O_2: using Transwell culture plate for primary generation Cerebral microvascular endothelial cells were co cultured with primary astrocytes; RT-q PCR was used to detect astrocytes PDK1, LDHA, HK1, HK2, GLUT1, MCT4, and VEGF transcriptional level; Western blot was used to detect the level of the primary astrocyte VEGF protein; enzyme kinetics colorimetric assay was used to detect the release level. Results: the first part: 1. obtained the original The purity of the cultured rat brain astrocytes was 98.4%; 2. obtained the primary cultured rat brain microvascular endothelial cells, and the purity was 95.2%. second: 1. compared with the normal oxygen condition (21%O_2), the level of HIF-1 alpha protein in the primary astrocytes was significantly increased under the 1~3% oxygen concentration condition, and the HIF-1 alpha protein under the 5~9% oxygen concentration condition. There is no significant change in level, suggesting that the 5%O_2 oxygen concentration condition is the critical concentration of the primary brain astrocytes in the absence of hypoxia. We define this hypoxic condition as a mild hypoxic condition. Under mild hypoxia, 1 m M DETA (NO donor) preconditioning 12 h can induce primary astrocyte HIF-1 alpha protein. The level was up, but could be suppressed by NO scavenger. Under mild hypoxia, 3.5%O_2, LDHA, HK1, HK2, GLUT1, GLUT3, MCT4, VEGF gene transcriptional level increased significantly after DETA pretreatment, and the level of VEGF protein and the release level increased significantly. Gene transcription can inhibit DETA up regulation of PDK1, LDHA, HK1, HK2, GLUT1, GLUT3, MCT4, VEGF gene transcription, inhibition of VEGF protein expression and LAC release. The third part: under the mild hypoxia conditions, the generation and release of primary brain astrocytes are less (86 + 41), and the primary cerebral microvascular endothelial cells can release a certain amount. NO (832 + 83 n M Nitrite/Nitrate, equivalent to the peak concentration of Nitrite/Nitrate released by 0.8 m M DETA), but can be inhibited by NOS inhibitors; under mild hypoxic condition, the primary brain microvascular endothelial cells co cultured with the primary astrocytes can induce the up regulation of astrocyte HIF-1 alpha protein level, but can be suppressed by NOS. Preparation inhibition; under mild hypoxic condition of 3.5%O_2, primary cerebral microvascular endothelial cells co cultured with primary astrocytes can up regulate astrocyte PDK1, LDHA, HK1, HK2, GLUT1, MCT4, VEGF gene transcription, up regulation of VEGF protein expression and LAC release, but can be inhibited by NOS inhibitor. Conclusion: under mild hypoxia conditions, in vitro, in vitro The cultured primary rat astrocytes did not feel hypoxic, and the NO donor drugs and co cultured brain microvascular endothelial cells under this hypoxic condition could make the brain astrocytes feel hypoxic, and up regulation of HIF-1 alpha downstream and anaerobic glycolysis, glucose and lactic acid transport, angiogenesis and other low oxygen compensatory effects The transcriptional or expression of the gene of the enzyme or factor; the results of eliminating NO or inhibiting NO production, and interfering with the transcription of HIF-1 a gene indicate that NO can up regulate the transcription or expression of the downstream genes by blocking the degradation of HIF-1 a. To sum up, the NO released by the primary rat cerebral microvascular endothelial cells in mild hypoxia can be used as a hypoxic signal and diffusion conduction. This study enriches the effect mechanism of NO as an endogenous cell signal molecule, and explains the conduction pathway of the hypoxia signal in the neurons of the neurovascular unit at the time of mild hypoxia, in order to further study the hypoxic hypoxic brain damage disease, and further study the disease of hypoxic hypoxic brain damage. The pathogenesis and intervention measures laid the foundation.
【學(xué)位授予單位】:第三軍醫(yī)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:R742
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃其林,蔡文琴,張可成;培養(yǎng)的星形膠質(zhì)細(xì)胞反應(yīng)性膠質(zhì)化的研究[J];中華實(shí)驗(yàn)外科雜志;2000年02期
2 項(xiàng)紅兵,田玉科;星形膠質(zhì)細(xì)胞與疼痛敏化調(diào)控[J];臨床麻醉學(xué)雜志;2003年09期
3 劉慧,王小軍,胡榮,楊忠,蔡文琴;星形膠質(zhì)細(xì)胞[J];生理科學(xué)進(jìn)展;2004年01期
4 張敬軍;;星形膠質(zhì)細(xì)胞的研究[J];中國(guó)藥理學(xué)通報(bào);2006年07期
5 陳彬;劉寬;王偉;;成年大鼠神經(jīng)元和星形膠質(zhì)細(xì)胞細(xì)胞周期蛋白依賴性激酶抑制因子表達(dá)的差異研究[J];卒中與神經(jīng)疾病;2007年05期
6 沈維高;何欣;王振江;;星形膠質(zhì)細(xì)胞的生物學(xué)功能及其與疾病的關(guān)系研究進(jìn)展[J];北華大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年06期
7 ;英國(guó)科學(xué)家確定星形膠質(zhì)細(xì)胞新功能[J];中國(guó)當(dāng)代醫(yī)藥;2010年27期
8 靳哲;趙忠新;;星形膠質(zhì)細(xì)胞在癲癇發(fā)病中的作用研究[J];世界臨床藥物;2012年01期
9 李軍杰,張致身;短暫性腦缺血發(fā)作后海馬區(qū)星形膠質(zhì)細(xì)胞形態(tài)學(xué)研究[J];首都醫(yī)科大學(xué)學(xué)報(bào);1998年04期
10 解旭東,田國(guó)紅;星形膠質(zhì)細(xì)胞與癲癇[J];中風(fēng)與神經(jīng)疾病雜志;1999年01期
相關(guān)會(huì)議論文 前10條
1 劉慶瑩;趙珠峰;朱長(zhǎng)庚;;星形膠質(zhì)細(xì)胞在癲癇復(fù)發(fā)中的作用[A];解剖學(xué)雜志——中國(guó)解剖學(xué)會(huì)2002年年會(huì)文摘匯編[C];2002年
2 唐愛輝;王同飛;王世強(qiáng);;星形膠質(zhì)細(xì)胞鈣活動(dòng):腦細(xì)胞網(wǎng)絡(luò)中的第二興奮系統(tǒng)?[A];中國(guó)神經(jīng)科學(xué)學(xué)會(huì)第六屆學(xué)術(shù)會(huì)議暨學(xué)會(huì)成立十周年慶祝大會(huì)論文摘要匯編[C];2005年
3 池美珠;陳超;錢燕;李劍敏;吳步猛;;產(chǎn)前重復(fù)激素治療對(duì)星形膠質(zhì)細(xì)胞發(fā)育的影響[A];浙江省圍產(chǎn)醫(yī)學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2005年
4 魏爾清;;半胱氨酰白三烯受體對(duì)星形膠質(zhì)細(xì)胞功能的調(diào)節(jié)作用[A];中國(guó)藥理學(xué)會(huì)第九次全國(guó)會(huì)員代表大會(huì)暨全國(guó)藥理學(xué)術(shù)會(huì)議論文集[C];2007年
5 吳建云;王鮮忠;王劍;諶劍波;范光麗;張家驊;;大腦皮質(zhì)星形膠質(zhì)細(xì)胞培養(yǎng)及鑒定[A];中國(guó)畜牧獸醫(yī)學(xué)會(huì)動(dòng)物解剖學(xué)及組織胚胎學(xué)分會(huì)第十五次學(xué)術(shù)研討會(huì)論文集[C];2008年
6 趙玉武;程曉娟;;星形膠質(zhì)細(xì)胞與腦水腫的形成[A];山東省2013年神經(jīng)內(nèi)科學(xué)學(xué)術(shù)會(huì)議暨中國(guó)神經(jīng)免疫大會(huì)2013論文匯編[C];2013年
7 董其平;柴真;;谷氨酸對(duì)培養(yǎng)的星形膠質(zhì)細(xì)胞的鈣活動(dòng)的影響[A];“基因、進(jìn)化與生理功能多樣性”海內(nèi)外學(xué)術(shù)研討會(huì)暨中國(guó)生理學(xué)會(huì)第七屆比較生理學(xué)學(xué)術(shù)會(huì)議論文摘要[C];2009年
8 曾俊;李康生;;柯薩奇病毒感染星形膠質(zhì)細(xì)胞及細(xì)胞因子變化研究[A];新發(fā)和再發(fā)傳染病防治熱點(diǎn)研討會(huì)論文集[C];2010年
9 鮑歡;徐曉云;顧曉波;徐霞紅;胡暉;;缺氧后水通道蛋白4在體外培養(yǎng)星形膠質(zhì)細(xì)胞表達(dá)變化的實(shí)驗(yàn)研究[A];中華醫(yī)學(xué)會(huì)第十三次全國(guó)神經(jīng)病學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2010年
10 熊加祥;白云;宋敏;王艷艷;楊曉亞;;星形膠質(zhì)細(xì)胞表達(dá)免疫分子維持大腦免疫穩(wěn)態(tài)[A];中國(guó)神經(jīng)科學(xué)學(xué)會(huì)第六屆學(xué)術(shù)會(huì)議暨學(xué)會(huì)成立十周年慶祝大會(huì)論文摘要匯編[C];2005年
相關(guān)重要報(bào)紙文章 前10條
1 記者 胡德榮;星形膠質(zhì)細(xì)胞由“天使”變“魔鬼”原因找到[N];健康報(bào);2012年
2 記者 劉海英;星形膠質(zhì)細(xì)胞可調(diào)節(jié)呼吸強(qiáng)度[N];科技日?qǐng)?bào);2010年
3 劉霞;腦內(nèi)星形膠質(zhì)細(xì)胞在實(shí)驗(yàn)室培育成功[N];科技日?qǐng)?bào);2011年
4 汪敏華;大腦星形膠質(zhì)細(xì)胞有兩種新功能[N];解放日?qǐng)?bào);2003年
5 吳一福;黃芪可調(diào)節(jié)星形膠質(zhì)細(xì)胞“時(shí)間模式”[N];中國(guó)醫(yī)藥報(bào);2005年
6 陽(yáng)潔;何必要對(duì)大學(xué)生說“NO”[N];中國(guó)電腦教育報(bào);2007年
7 殷昌盛;被傳外資參股 真功夫說NO[N];東莞日?qǐng)?bào);2011年
8 本報(bào)記者 羅林林;莞30家具企業(yè)湖北建廠?NO[N];東莞日?qǐng)?bào);2012年
9 蘭昆;環(huán)保不是只說“NO”[N];中國(guó)經(jīng)濟(jì)導(dǎo)報(bào);2006年
10 孔秋芝 薛善蒙;讓客戶不再說“NO”[N];中國(guó)保險(xiǎn)報(bào);2003年
相關(guān)博士學(xué)位論文 前10條
1 史清海;內(nèi)皮源性NO介導(dǎo)的低氧信號(hào)啟動(dòng)星形膠質(zhì)細(xì)胞低氧代償?shù)臋C(jī)制研究[D];第三軍醫(yī)大學(xué);2017年
2 曾招;離子通道TRPM7調(diào)節(jié)細(xì)胞生理的分子機(jī)制研究[D];蘇州大學(xué);2014年
3 黃維一;骨髓間充質(zhì)干細(xì)胞旁分泌因子對(duì)缺血性腦卒中后星形膠質(zhì)細(xì)胞活性及功能的影響[D];南方醫(yī)科大學(xué);2015年
4 楊俊華;星形膠質(zhì)細(xì)胞來源的ATP促進(jìn)丘腦中的突觸刪除[D];浙江大學(xué);2015年
5 鄧雅婷;龍膽苦苷鎮(zhèn)痛與抗抑郁的中樞作用及機(jī)制研究[D];第四軍醫(yī)大學(xué);2015年
6 李新;星形膠質(zhì)細(xì)胞NDRG2在七氟烷預(yù)處理神經(jīng)保護(hù)作用中的機(jī)制研究[D];第四軍醫(yī)大學(xué);2015年
7 鐘志宏;亞鐵離子對(duì)星形膠質(zhì)細(xì)胞的損傷作用及香芹酚在實(shí)驗(yàn)性腦出血中的神經(jīng)保護(hù)作用[D];上海交通大學(xué);2014年
8 洪洋;孕酮對(duì)Aβ所致星形膠質(zhì)細(xì)胞炎癥反應(yīng)的調(diào)節(jié)作用及機(jī)制研究[D];河北醫(yī)科大學(xué);2016年
9 凌云志;帕瑞昔布減輕過氧化氫誘導(dǎo)的大鼠星形膠質(zhì)細(xì)胞氧化應(yīng)激損傷的作用及機(jī)制研究[D];安徽醫(yī)科大學(xué);2015年
10 徐進(jìn);腦出血后星形膠質(zhì)細(xì)胞AQP4內(nèi)化及其機(jī)制的研究[D];重慶醫(yī)科大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 龔佩佩;磷酸化MSK1在星形膠質(zhì)細(xì)胞炎癥活化過程中的作用的研究[D];南通大學(xué);2013年
2 何潔玉;糖皮質(zhì)激素對(duì)星形膠質(zhì)細(xì)胞分泌GnRH的調(diào)控機(jī)制[D];西南大學(xué);2015年
3 張麗麗;脂肪基質(zhì)細(xì)胞誘導(dǎo)分化為星形膠質(zhì)細(xì)胞過程中線粒體凋亡與自噬的關(guān)系[D];河北聯(lián)合大學(xué);2014年
4 燕茹;高同型半胱氨酸血癥致ApoE~(-/-)小鼠腦血管、星形膠質(zhì)細(xì)胞及神經(jīng)元損傷作用研究[D];寧夏醫(yī)科大學(xué);2015年
5 米鵬霞;P物質(zhì)對(duì)星形膠質(zhì)細(xì)胞的活化作用及機(jī)制研究[D];山西醫(yī)科大學(xué);2015年
6 楊志奇;小鼠皮層內(nèi)移植膠質(zhì)細(xì)胞形態(tài)及功能重建研究[D];第三軍醫(yī)大學(xué);2015年
7 陳雅南;敲除星形膠質(zhì)細(xì)胞的dicer對(duì)中樞神經(jīng)系統(tǒng)的影響[D];杭州師范大學(xué);2015年
8 馬輝;星形膠質(zhì)細(xì)胞上酸敏感離子通道1a在顳葉癲癇發(fā)生中的作用研究[D];第四軍醫(yī)大學(xué);2015年
9 周亞蘭;IFN-γ介導(dǎo)T細(xì)胞參與炎性痛慢性化機(jī)制的研究[D];第二軍醫(yī)大學(xué);2015年
10 鄧子輝;瘦素抑制星形膠質(zhì)細(xì)胞縫隙連接蛋白-43表達(dá)改善腦缺血再灌注損傷的機(jī)制研究[D];中國(guó)人民解放軍醫(yī)學(xué)院;2015年
,本文編號(hào):2141466
本文鏈接:http://sikaile.net/yixuelunwen/shenjingyixue/2141466.html