點過程序列數(shù)據(jù)的建模與分類方法研究
[Abstract]:Deletion of data is more common in clinical studies. Because of the uncertainty of the time of death, it can only be regarded as a large range, and because the premise of the point process theory is that the point event is assumed to occur in a very small range, the censored data cannot be regarded as a point event. It is an important task to model and analyze the point process and survival data of censored data. In this paper, the nonparametric estimation of survival function based on point process theory is proposed. The proposed method is applied to the nonparametric estimation of survival curve between simulated data and real breast cancer data, and compared with the traditional SC method. Entropy is widely used in the detection and classification of two groups of EEG and ECG signals. However, entropy can only extract the complexity of chaotic signals and ignore the difference of the largest values in the two signals. Therefore, in two signals with similar complexity but great difference in amplitude, the classification effect of entropy is greatly reduced. In this paper, a signal classification method based on multivariate point process entropy is proposed by adding the maximum value information to the sample entropy. The method was applied to the published EEG data from the epilepsy center of the University of Bonn. The classification results were compared with the traditional multivariate multi-scale entropy classification results based only on the original EEG data. The results show that the accuracy of the proposed method is higher than that of the traditional multivariate multi-scale entropy. Finally, different levels of white noise are added to the epileptic EEG data in Bonn, and at the same time, the method of this paper and the traditional multi-scale entropy are used to classify the EEG data. The results show that the multivariate point process entropy has higher accuracy than the traditional method in signal analysis with large interference.
【學(xué)位授予單位】:燕山大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TN911.6;R742.1
【參考文獻】
相關(guān)期刊論文 前10條
1 張全明;劉會金;蘭泉妮;;基于小波混合閾值方法的電能質(zhì)量信號去噪[J];電力自動化設(shè)備;2008年08期
2 裴韜;李婷;周成虎;;時空點過程:一種新的地學(xué)數(shù)據(jù)模型、分析方法和觀察視角[J];地球信息科學(xué)學(xué)報;2013年06期
3 孫曉惠;尹長川;;基于雙變量泊松點過程的無線Ad Hoc網(wǎng)絡(luò)的保密廣播傳輸容量分析[J];電子學(xué)報;2014年09期
4 范顯峰,姜興渭;基于小波包變換的信號去噪方法研究[J];哈爾濱工業(yè)大學(xué)學(xué)報;2003年07期
5 劉毅;張彩明;趙玉華;董亮;;基于多尺度小波包分析的肺音特征提取與分類[J];計算機學(xué)報;2006年05期
6 劉慧,和衛(wèi)星,陳曉平;睡眠腦電的非線性動力學(xué)方法[J];江蘇大學(xué)學(xué)報(自然科學(xué)版);2005年02期
7 徐致靖;祖正虎;許晴;張文斗;鄭濤;;基于自激點過程的恐怖活動建模研究[J];軍事醫(yī)學(xué);2012年10期
8 何建農(nóng);鐘順虹;;基于標(biāo)值點過程改進的遙感道路提取新算法[J];計算機工程與應(yīng)用;2013年17期
9 張家平;;基于點過程的極值尾部估計研究[J];數(shù)學(xué)的實踐與認(rèn)識;2010年03期
10 白冬梅;邱天爽;李小兵;;樣本熵及在腦電癲癇檢測中的應(yīng)用[J];生物醫(yī)學(xué)工程學(xué)雜志;2007年01期
本文編號:2124908
本文鏈接:http://sikaile.net/yixuelunwen/shenjingyixue/2124908.html