電刺激迷走神經對急性腦缺血再灌注損傷的影響及機制研究
本文選題:腦缺血再灌注 + VNS ; 參考:《重慶醫(yī)科大學》2015年博士論文
【摘要】:研究背景與目的目前急性腦卒中已成為中國人致死性疾病的首位原因,及時恢復半暗帶腦血流是最直接有效的治療方式。但早期腦缺血再灌注(ischemia/reperfusion, I/R)后容易誘導產生大量氧自由基、瀑布式炎癥反應、壞死和凋亡等級聯反應,多種因素間互相作用,造成二次腦損傷。因此,成功發(fā)展作用于腦卒中多種分子機制的治療方式是迫切需要的。1997年美國食品和藥品監(jiān)督局(Food and Drug Administration,FDA)推薦VNS (vagus nerve stimulation, VNS)應用于部分發(fā)作性難治性癲癇患者,隨后多個國家相繼批準。近年來,國外研究發(fā)現VNS對急性腦缺血再灌注大鼠具有神經保護作用,但其機制不明確。本研究擬通過VNS對急性腦缺血再灌注后氧化應激、凋亡、炎癥反應的影響及可能分子機制進行深入探討,為其臨床應用提供一定理論依據。研究方法第一部分:采用顱內注射antagmiR210抑制內源性miR210表達,線栓法制備右側大腦中動脈栓塞/再灌注(Middle cerebral artery occlusion/reperfusion, MCAO/R)模型,梗塞30min后給予VNS干預。MCAO手術及電刺激過程監(jiān)測心率、尾動脈血壓、血氣以及右側大腦中動脈供血區(qū)腦血流變化。再灌注24h時,熒光定量PCR檢測各組miR210表達。采用Bederson 5分制評估再灌注24h時神經體征損傷、測定腦梗死體積;(Tdt-mediated dutp nick end labeling, TUNEL)原位凋亡檢測技術檢測缺血側皮層神經元凋亡數量;ELISA檢測缺血側腦組織氧化應激反應水平(Superoxide Dismutase, SOD)、(Maleic Dialdehyde assay, MDA)、(Glutathione, GSH)。Western blot技術檢測各組缺血側皮層p-Akt和caspase-3活性蛋白表達情況,免疫熒光染色測各組缺血皮層caspase-3陽性細胞表達。第二部分:采用顱內注射PPARyRNAi技術抑制PPARy (Peroxisome proliferator -activated receptor y, PPARy)表達,構建右側大腦中動脈栓塞/再灌注模型,梗塞30min后VNS干預,熒光定量PCR和Western blot技術檢測各組缺血側皮層PPARy基因和蛋白表達;采用Ludmila Belayev 12分制評估神經功能缺失和腦梗死體積;HE染色顯示各組缺血側腦組織的病理變化;免疫熒光雙標檢測缺血側皮層小膠質細胞和星形膠質細胞表面a7乙酰膽堿能受體(a7nicotinic acetylcholine receptor, a7nAchR)表達;ELISA檢測缺血側腦組織腫瘤壞死因子a(Tumor necrosis factor α, TNF-α)、白介素-1β(Interleukin 1β, IL-1β)含量水平。研究結果第一部分:(1)實驗過程中,VNS對大鼠心率(Heart rate, HR)、血壓(Blood pressure, BP)、血氣及右側大腦中動脈供血區(qū)腦血流無明顯影響(p0.05);(2)與缺血組(I/R)相比,VNS進一步增加缺血誘導的miR210表達(p0.05),改善腦缺血再灌注急性期神經功能癥狀缺失和減少腦梗死體積,減少缺血側皮層神經元凋亡數量(p0.05),沉默miR210后,進一步加重缺血導致的腦組織損傷同時也減少VNS神經保護作用(p0.05),提示miR210參與VNS的神經保護效應。(3)與假手術組(sham I/R)相比,缺血后導致大鼠缺血側皮層SOD活性下降、GSH含量減少和MAD含量增加;與缺血組(I/R)相比,VNS明顯抑制缺血側腦組織氧化應激水平(p0.05);沉默miR210后,進一步加重再灌注誘導的氧化應激反應(p0.05),同時削弱VNS抗氧化應激效應(p0.05)。(4)與假手術組(sham I/R)相比,缺血再灌注后缺血側腦組織p-Akt含量減少(p0.05),VNS干預后逆轉缺血抑制p-Akt表達的效應(p0.05),并且p-Akt蛋白變化與antagomiR210干擾無明顯關聯性(p0.05)。(5)與假手術組(sham I/R)相比,缺血組(I/R)缺血側皮層caspase 3活性蛋白表達明顯增加(p0.05);沉默miR210后,進一步增加缺血側腦組織caspase3活性(p0.05),而VNS后可抑制缺血側皮層caspase 3活性蛋白表達(p0.05);沉默miR210后,明顯減弱VNS抑制凋亡反應效應(p0.05),各組免疫熒光caspase 3活性細胞變化趨勢同蛋白表達基本一致,提示miR210參與VNS對氧化應激和凋亡的調控過程。第二部分:(1)熒光定量PCR和Western blot法檢測顱內注射PPARyRNAi干預后各組PPARy表達示:與缺血+陰性病毒對照組(I/R+ LV-control)相比,缺血+電刺激+陰性病毒對照組(I/R+VNS+LV-control)中PPARγ基因和蛋白表達明顯上調(p0.05);PPARyRNAi干擾后,缺血+干擾組(I/R+LV-shPPARr)和缺血+電刺激+干擾組(I/R+VNS+LV-shPPARr)兩組基因蛋白表達明顯下降(p0.05)。(2)再灌注24h時,VNS改善神經功能癥狀缺失,減少腦梗死體積,減輕腦組織病理損傷,抑制缺血側皮層炎癥因子(TNF-α、IL-1β)水平(p0.05);PPARyRNAi干擾后,VNS保護效應明顯下降,炎癥因子水平增加(p0.05),提示PPAR γ參與VNS對炎癥反應的抑制過程。(3)免疫熒光顯示VNS同時可以激活缺血側皮層小膠質細胞和星形膠質細胞表面a7nAchR,調控神經免疫細胞形態(tài)和功能,發(fā)揮抗炎作用。結論(1)VNS改善急性腦缺血再灌注大鼠神經功能癥狀缺失和減少腦梗死體積。(2)VNS減少急性腦缺血再灌注大鼠缺血半暗帶神經元凋亡數量。(3)VNS減少急性腦缺血再灌注大鼠缺血半暗帶氧化應激和凋亡反應。(4)電刺激迷走神經減少急性腦缺血再灌注大鼠缺血半暗帶炎癥反應。(5)miR210表達活動影響氧化應激和凋亡反應,參與了電刺激迷走神經對急性腦缺血再灌注大鼠腦保護作用。PPARy表達活動調節(jié)腦缺血再灌注后炎癥反應參與了電刺激迷走神經對急性腦缺血再灌注大鼠的腦保護作用。
[Abstract]:Background and objective acute cerebral apoplexy has become the first cause of fatal disease in China. It is the most direct and effective way to restore the cerebral blood flow in the semi dark zone in time. However, early cerebral ischemia reperfusion (ischemia/reperfusion, I/R) easily induces a large number of oxygen free radicals, waterfall inflammation, necrosis and apoptosis. A variety of factors interact with each other to cause two brain damage. Therefore, the successful development of a multiple molecular mechanism for stroke is an urgent need for the.1997 and Drug Administration (FDA) and the recommendation of the VNS (vagus nerve stimulation, VNS) for partial seizures of intractable epilepsy. In recent years, foreign studies have found that VNS has a neuroprotective effect on acute cerebral ischemia reperfusion rats, but its mechanism is not clear. This study intends to explore the effects and possible molecular mechanisms of oxidative stress, apoptosis, inflammatory response and the possible molecular mechanism of acute cerebral ischemia reperfusion in order to provide the clinical application of VNS. Part 1: the first part of the study: using intracranial injection of antagmiR210 to inhibit endogenous miR210 expression, and to prepare the right middle cerebral artery embolism / reperfusion (Middle cerebral artery occlusion/reperfusion, MCAO/R) model by the thread thrombus method. After the infarct 30min, the heart rate and the tail artery were monitored by the VNS dry pre.MCAO operation and the electrical stimulation process. Blood pressure, blood gas and the cerebral blood flow in the right middle cerebral artery supply area. MiR210 expression in each group was detected by fluorescence quantitative PCR at 24h. Bederson 5 fraction was used to evaluate the neurological damage, and the volume of cerebral infarction was measured; (Tdt-mediated dUTP nick end labeling, TUNEL) in situ apoptosis detection technique for the detection of ischemic cortex God The number of apoptotic cells, the level of oxidative stress response (Superoxide Dismutase, SOD), (Maleic Dialdehyde assay, MDA), (Glutathione, GSH).Western blot techniques were detected by ELISA, and the expression of active protein in the ischemic cortex of each group was detected by Glutathione, GSH.Western blot, and the immunofluorescence staining was used to detect the positive cells of ischemic cortex The second part: the second part: using the intracranial injection of PPARyRNAi technique to inhibit the expression of PPARy (Peroxisome proliferator -activated receptor y, PPARy), construct the right middle cerebral artery embolization / reperfusion model, the VNS intervention after the infarct 30min, and the fluorescence quantitative PCR and Western techniques to detect the gene and protein expression of the ischemic side cortex. The Ludmila Belayev 12 score was used to evaluate the loss of nerve function and the volume of cerebral infarction; HE staining showed the pathological changes of the ischemic brain tissue in each group; the expression of A7 acetylcholinergic receptor (a7nicotinic acetylcholine receptor, a7nAchR) on the surface of ischemic lateral cortex and astrocytes was detected by double labeling immunofluorescence; ELISA detection was absent. The level of tumor necrosis factor A (Tumor necrosis factor A, TNF- alpha) and interleukin -1 beta (Interleukin 1 beta, IL-1 beta) in the cerebral tissue of the blood side. Results the first part: (1) in the experimental process, VNS has no obvious effect on the heart rate (Heart rate, HR), blood pressure, blood gas and the blood flow of the right middle cerebral artery in the rat. (2) compared with the ischemic group (I/R), VNS further increased the miR210 expression (P0.05) induced by ischemia, improved the loss of nerve function symptoms and reduced the volume of cerebral infarction in the acute phase of cerebral ischemia reperfusion, reduced the number of neuronal apoptosis in the ischemic lateral cortex (P0.05). After silent miR210, the brain tissue damage caused by ischemia was further aggravated and the VNS God was also reduced. The protective effect (P0.05) showed that miR210 was involved in the neuroprotective effect of VNS. (3) compared with the sham operation group (sham I/R), the ischemic side cortex SOD activity decreased, the GSH content decreased and the MAD content increased. Compared with the ischemic group (I/R), VNS significantly inhibited the level of oxidative stress in the ischemic side brain tissue (P0.05); after silencing miR210, further further Aggravated reperfusion induced oxidative stress response (P0.05) and weakened VNS antioxidant stress effect (P0.05). (4) compared with the sham group (sham I/R), the ischemic side cerebral tissue p-Akt content decreased (P0.05) after ischemia-reperfusion, and VNS intervention reversed the inhibitory effect of ischemia on the inhibitory effect of p-Akt (P0.05), and p-Akt protein changes and antagomiR210 interference were not clear. Significant correlation (P0.05). (5) compared with the sham group (sham I/R), the expression of caspase 3 active protein in the ischemic side cortex of ischemic group (I/R) increased significantly (P0.05). After silence miR210, Caspase3 activity (P0.05) was further increased in ischemic side brain tissue, while VNS could inhibit the expression of caspase 3 active protein (P0.05) in the ischemic side cortex after VNS. Weak VNS inhibits apoptosis response effect (P0.05), and the change trend of immunofluorescent caspase 3 active cells is basically the same as protein expression, suggesting that miR210 participates in the regulatory process of VNS on oxidative stress and apoptosis. The second part: (1) fluorescence quantitative PCR and Western blot method for the detection of PPARy expression in each group after the intervention of intracranial injection PPARyRNAi: and ischemia + Compared with the negative virus control group (I/R+ LV-control), the PPAR gamma gene and protein expression in the ischemic + electrical stimulation + negative virus control group (I/R+VNS+LV-control) increased significantly (P0.05). After PPARyRNAi interference, the expression of gene protein in the two groups of ischemic + interference group (I/R+LV-shPPARr) and ischemia + Electrical stimulation + interference group (I/R+VNS+LV-shPPARr) decreased significantly (P0.05). (2) when reperfusion of 24h, VNS improved the lack of neurological symptoms, reduced the volume of cerebral infarction, reduced the pathological damage of brain tissue, and inhibited the level of inflammatory factors (TNF-, IL-1 beta) in the ischemic lateral cortex (P0.05). After PPARyRNAi interference, the protective effect of VNS was significantly decreased, and the level of inflammatory factors increased (P0.05), suggesting that PPAR gamma participates in the inhibition of the inflammatory reaction of VNS. (3) immunofluorescence showed that VNS could activate the a7nAchR of the microglia and astrocytes on the ischemic side of the ischemic cortex, regulate the morphology and function of the neurocyte and play an anti-inflammatory effect. Conclusion (1) VNS can improve the lack of neurological symptoms and reduce the volume of cerebral infarction in the rats with acute cerebral ischemia reperfusion. (2) VNS reduces the acute cerebral ischemia reperfusion The number of apoptosis in the rat ischemic penumbra neurons. (3) VNS reduces the oxidative stress and apoptosis response in the ischemic penumbra of rats with acute cerebral ischemia reperfusion. (4) electric stimulation of the vagus nerve to reduce the inflammatory response in the ischemic penumbra of rats with acute cerebral ischemia reperfusion. (5) miR210 expression activity affects oxidative stress and apoptosis response, and participates in the electrical stimulation of the vagus. The protective effect of.PPARy on acute cerebral ischemia reperfusion rats regulates the inflammatory response after cerebral ischemia reperfusion and the protective effect of electric stimulation of the vagus nerve on the rats with acute cerebral ischemia reperfusion.
【學位授予單位】:重慶醫(yī)科大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:R743.3
【相似文獻】
相關期刊論文 前10條
1 劉魯霞;對1例急性腦缺血發(fā)作病人的護理[J];國外醫(yī)學.護理學分冊;2002年06期
2 謝非;鄧佩琳;;腦栓康對小鼠急性腦缺血保護作用的實驗研究[J];中國社區(qū)醫(yī)師(綜合版);2004年21期
3 李茜;陳興東;段滿林;;急性腦缺血對機體免疫系統的影響[J];醫(yī)學研究生學報;2013年06期
4 石一鳴,楊林;急性腦缺血時血漿兒茶酚胺含量改變[J];中國病理生理雜志;1991年02期
5 毛建生,史載祥;中藥對實驗性急性腦缺血的影響[J];中國中醫(yī)藥信息雜志;1995年08期
6 謝湘林,宗瑞義,魯澄宇,孫乾;急性腦缺血對腦內乙酰膽堿和膽堿乙酰轉移酶的影響[J];白求恩醫(yī)科大學學報;1997年04期
7 舒敏,章軍建;納絡酮對大鼠急性腦缺血損傷預防作用的研究[J];數理醫(yī)藥學雜志;2001年03期
8 熊杰,張果忠;急性腦缺血后發(fā)熱的研究現狀[J];現代中西醫(yī)結合雜志;2003年11期
9 朱錫德;洪國良;張建寧;;頸外傷致急性腦缺血臨床及磁共振動態(tài)觀察一例[J];中國腦血管病雜志;2005年11期
10 吳文娟;徐凱;;功能性磁共振成像在急性腦缺血中的研究[J];醫(yī)學綜述;2007年12期
相關會議論文 前10條
1 秦懷海;劉智;王文蕾;沈尋;;老年慢性硬膜下血腫手術后并發(fā)一過性急性腦缺血[A];第七屆全國創(chuàng)傷學術會議暨2009海峽兩岸創(chuàng)傷醫(yī)學論壇論文匯編[C];2009年
2 劉波;葉泳松;周懂京;鄧時貴;劉峴;龍玉;桑學池;;磁共振擴散加權成像對電針治療兔急性腦缺血療效的評價[A];中華醫(yī)學會第十三屆全國放射學大會論文匯編(下冊)[C];2006年
3 王淑英;王建剛;李艷;路西明;;腦心血栓康對小鼠急性腦缺血保護的實驗研究[A];全國第三屆心腦血管疾病學術會議論文集[C];2003年
4 任麗民;辛隨成;唐啟勝;李秀芬;;針灸對實驗性兔急性腦缺血保護作用的超微結構研究[A];第九次全國電子顯微學會議論文摘要集(Ⅰ)[C];1996年
5 張允嶺;劉雪梅;劉超;柳洪勝;婁金麗;王新祥;陶冶;鄭宏;黃啟福;;從急性腦缺血再灌動態(tài)損傷過程及中藥干預作用探討毒損腦絡的生物學基礎[A];國家中醫(yī)藥管理局腦病重點研究室建設研討會暨中風病科研成果推廣交流會論文匯編[C];2010年
6 姜英;;應用地壇牌清開靈注射液治療急性腦缺血臨床探討[A];心腦病藥物臨床評價專家談[C];1998年
7 周弋人;羅祖明;;不同療程的燈盞細辛對大鼠急性腦缺血恢復期的保護作用[A];中華醫(yī)學會第七次全國神經病學學術會議論文匯編[C];2004年
8 葉小明;;丹參治療急性腦缺血及對細胞間粘附因子-1的濃度影響[A];第四次全國中西醫(yī)結合神經系統疾病學術研討會論文集[C];2002年
9 周飛;郭景春;楊茹;程介士;吳根誠;夏螢;;頻率相關的電針抗急性腦缺血大鼠的效應的觀察[A];中國針灸學會第七屆全國中青年針灸推拿學術研討會論文匯編[C];2006年
10 王斌;孫建寧;張碩峰;孫文燕;吳金英;賈占紅;;清腦宣竅滴丸對急性腦缺血再灌注損傷大鼠腦組織5-脂氧酶/白三烯通路的干預[A];中華中醫(yī)藥學會中藥實驗藥理分會第八屆學術會議論文摘要匯編[C];2009年
相關重要報紙文章 前2條
1 ;黃芪有抗大鼠急性腦缺血后神經元凋亡作用[N];中國中醫(yī)藥報;2005年
2 鄒余;人老七不要[N];大眾衛(wèi)生報;2001年
相關博士學位論文 前5條
1 蘭瑞;小續(xù)命湯對急性腦缺血再灌注損傷的神經保護作用及機制研究[D];復旦大學;2014年
2 蔣瑩;電刺激迷走神經對急性腦缺血再灌注損傷的影響及機制研究[D];重慶醫(yī)科大學;2015年
3 王斌;清腦宣竅滴丸調控大鼠急性腦缺血損傷炎性代謝網絡紊亂的研究[D];北京中醫(yī)藥大學;2009年
4 溫仲民;大鼠急性腦缺血再灌注模型的制備和Hephastin表達變化的研究[D];蘇州大學;2004年
5 李鐵浪;電針不同穴組對急性腦缺血大鼠治療作用比較及相關機理探討[D];湖南中醫(yī)藥大學;2005年
相關碩士學位論文 前10條
1 常向陽;急性腦缺血CT評分策略制定及應用研究[D];河北醫(yī)科大學;2015年
2 徐博佳;電針對急性腦缺血模型大鼠腦梗塞體積及腦水分含量的影響[D];黑龍江中醫(yī)藥大學;2005年
3 苗新剛;實驗性急性腦缺血時肝損傷及肝細胞凋亡動態(tài)變化的研究[D];新疆醫(yī)科大學;2003年
4 楊朝湘;多排CT灌注成像診斷急性腦缺血的實驗研究[D];蘇州大學;2002年
5 佘軍;針刺對急性腦缺血大鼠血清白蛋白、球蛋白及白球比的影響[D];黑龍江中醫(yī)藥大學;2004年
6 路敬葉;急性腦缺血老年大鼠外周血內皮祖細胞數量變化的研究[D];天津醫(yī)科大學;2009年
7 王威;通腑化痰法對急性腦缺血并發(fā)SIRS/MODS患者的臨床干預[D];北京中醫(yī)藥大學;2012年
8 王洋;麝香與冰片及其配伍對急性腦缺血模型動物的影響[D];成都中醫(yī)藥大學;2011年
9 韓艷紅;磁敏感加權成像與動態(tài)磁敏感對比MRI在急性腦缺血患者中的對比研究[D];鄭州大學;2011年
10 張超群;復方丹參片對實驗性急性腦缺血大鼠血管新生相關因子影響的研究[D];湖南中醫(yī)藥大學;2011年
,本文編號:2088594
本文鏈接:http://sikaile.net/yixuelunwen/shenjingyixue/2088594.html