基于頻域Granger因果分析研究顳葉癲癇多通道腦電的功能連接和因果網(wǎng)絡(luò)特性
本文選題:顳葉癲癇 切入點(diǎn):多通道腦電 出處:《天津醫(yī)科大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:研究目的: 癲癇是常見(jiàn)腦部疾病,對(duì)其發(fā)病機(jī)制的研究具有重要的臨床價(jià)值。本論文從多通道腦電的功能性連接和因果網(wǎng)絡(luò)的角度,以顳葉癲癇間歇期、發(fā)作前期、發(fā)作期和正常對(duì)照組的多通道腦電為研究對(duì)象,研究癲癇發(fā)作期過(guò)度放電的腦網(wǎng)絡(luò)機(jī)制,為癲癇機(jī)制研究提供思路和技術(shù)上的支持。 研究方法: 1實(shí)驗(yàn)數(shù)據(jù):實(shí)驗(yàn)數(shù)據(jù)來(lái)自天津醫(yī)科大學(xué)總醫(yī)院神經(jīng)外科功能室,臨床確診的顳葉癲癇組(年齡在19歲至47歲),正常對(duì)照組(年齡在24歲至30歲)各8例。癲癇致癇灶均位于前顳區(qū)(頭皮電極F7、F8)。分別采集顳葉癲癇組間歇期、發(fā)作前期、發(fā)作期和正常對(duì)照組共4個(gè)組各10段,每段10秒的16通道腦電(EEGs)數(shù)據(jù)。 2數(shù)據(jù)預(yù)處理:對(duì)EEGs進(jìn)行去基線漂移和去工頻干擾,并應(yīng)用Matlab FastICA算法去除明顯偽跡。 3時(shí)頻分析:應(yīng)用短時(shí)傅里葉變換對(duì)EEGs逐一通道進(jìn)行時(shí)頻分析,研究能量最大通道的顳葉癲癇組間歇期、發(fā)作前期、發(fā)作期和正常對(duì)照組EEGs的時(shí)頻分析,從中獲取癲癇發(fā)作期的主要頻率范圍:6和θ。 4應(yīng)用帶通濾波獲取EEGs的δ和0頻段分量。 5分別對(duì)4個(gè)組每1段EEGs的6和0頻段分量進(jìn)行Granger頻域因果關(guān)系分析: (1)對(duì)16通道EEGs時(shí)間序列進(jìn)行頻域因果分析,計(jì)算兩個(gè)節(jié)點(diǎn)之間因果值γij,平均后得到定向傳遞函數(shù)(Directed Transfer Function, DTF)值。 (2)應(yīng)用γij構(gòu)建因果網(wǎng)絡(luò),計(jì)算網(wǎng)絡(luò)的BC度量值(Betweenness Centrality,BC)。 (3)BC值的K均值聚類分析: 對(duì)顳葉癲癇組間歇期、發(fā)作前期、發(fā)作期整個(gè)過(guò)程的BC度量值進(jìn)行K均值聚類分析,將網(wǎng)絡(luò)各個(gè)節(jié)點(diǎn)分成兩類:活躍節(jié)點(diǎn)和不活躍節(jié)點(diǎn),并且分別分析BC度量值的變化趨勢(shì);以及對(duì)發(fā)作期的BC度量值進(jìn)行K均值聚類分析。 (4)計(jì)算發(fā)作期網(wǎng)絡(luò)的因果密度(Causal Density, CD): 計(jì)算顳葉癲癇組發(fā)作期各個(gè)節(jié)點(diǎn)的因果密度值,并對(duì)因果密度值進(jìn)行K均值聚類分析,和發(fā)作期BC度量值的活躍節(jié)點(diǎn)比較。 (5)計(jì)算網(wǎng)絡(luò)的因果流(Causal Flow, CF): 計(jì)算發(fā)作期活躍節(jié)點(diǎn)和非活躍節(jié)點(diǎn)的因果流值,以及間歇期、發(fā)作前期與活躍節(jié)點(diǎn)相對(duì)應(yīng)節(jié)點(diǎn)的因果流值并比較分析。 研究結(jié)果: 1時(shí)頻分布:為顳葉癲癇發(fā)作期能量集中在低頻段:δ和0頻段。 24個(gè)組多通道腦電的頻域功能性連接 (1)6頻段: 顳葉癲癇組:間歇期DTF均值(7.3404±1.9629);發(fā)作前期DTF均值(4.8755±1.0541);發(fā)作期DTF均值(8.1770±1.6978)。 正常對(duì)照組DTF均值(2.1591±0.5561)。 (2)θ頻段: 顳葉癲癇組:間歇期DTF值(8.1263±0.4356);發(fā)作前期DTF值(3.5955±0.8756);發(fā)作期DTF值(8.2826±0.4899)。 正常對(duì)照組DTF值(2.7373±0.6542)。 3顳葉癲癇組間歇期、發(fā)作前期和發(fā)作期BC度量值K均值聚類分析 (1)6頻段活躍節(jié)點(diǎn),間歇期BC度量值(0.0499±0.0149);發(fā)作前期BC度量值(0.0469±0.0095);發(fā)作期BC度量值(0.0800±0.0200)。 (2)0頻段活躍節(jié)點(diǎn),間歇期BC度量值(0.0467±0.0108);發(fā)作前期BC度量值(0.0437±0.0076);發(fā)作期BC度量值(0.0651±0.0126)。 4顳葉癲癇組發(fā)作期BC度量值與CD值的K均值聚類分析比較 在δ和0各個(gè)頻段,BC度量值的活躍節(jié)點(diǎn)和CD值的活躍節(jié)點(diǎn)重合率很高,兩者相同,或者前者包括了后者,或者后者包括了前者;兩者的位置與致癇灶位置并不相符。 5顳葉癲癇組發(fā)作期活躍節(jié)點(diǎn)的因果流分析 (1)δ頻段發(fā)作期活躍節(jié)點(diǎn)CF值(0.6864±0.3037),間歇期、發(fā)作前期與活躍節(jié)點(diǎn)相對(duì)應(yīng)的區(qū)域CF值(0.1495±0.1358)、(0.1174±0.0648)經(jīng)過(guò)驗(yàn)證皆符合正態(tài)分布,發(fā)作期活躍節(jié)點(diǎn)CF值分別與間歇期、發(fā)作前期相對(duì)應(yīng)的區(qū)域CF值進(jìn)行t檢驗(yàn),p0.05,均有顯著性差異。 (2)0頻段發(fā)作期活躍節(jié)點(diǎn)CF值(0.6661±0.1645),間歇期、發(fā)作前期與活躍節(jié)點(diǎn)相對(duì)應(yīng)的區(qū)域CF值(0.0774±0.1973)、CF值(0.1489±0.0570),經(jīng)過(guò)驗(yàn)證皆符合正態(tài)分布,發(fā)作期活躍節(jié)點(diǎn)CF值分別與間歇期、發(fā)作前期相對(duì)應(yīng)的區(qū)域CF值進(jìn)行t檢驗(yàn),p0.05,均有顯著性差異。 結(jié)論: 1顳葉癲癇發(fā)作期能量集中頻帶為δ和0頻段。 2顳葉癲癇組發(fā)作期比間歇期、發(fā)作前期功能連接特性增強(qiáng);發(fā)作期比正常對(duì)照組功能連接特性增強(qiáng);間歇期和發(fā)作前期功能連接性無(wú)明顯差異;間歇期、發(fā)作間期比正常對(duì)照組功能連接特性增強(qiáng)。 3顳葉癲癇發(fā)作期活躍節(jié)點(diǎn)因果網(wǎng)絡(luò)的BC度量值比間歇期、發(fā)作前期增大,間歇期和發(fā)作前期BC度量值無(wú)明顯差異。 4顳葉癲癇發(fā)作期根據(jù)因果密度和BC度量值分別K均值聚類分析得到的活躍節(jié)點(diǎn)位置相近。 5顳葉癲癇發(fā)作期活躍節(jié)點(diǎn)因果流值較大屬于因果源;非活躍節(jié)點(diǎn)因果流值較小屬于因果匯。
[Abstract]:The purpose of the study is:
Epilepsy is a common disease of the brain, the research on the pathogenesis of this disease has important clinical value. This paper from the function of multi-channel connection and causal network perspective, with intermittent temporal lobe epilepsy, early attack, attack of multi-channel EEG and normal control group as the research object, the mechanism of brain network excessive discharge of epileptic seizures, provide ideas and technical support for the mechanism of epilepsy.
Research methods:
1 experimental data: the experimental data from the Department of Neurosurgery of General Hospital Affiliated to Tianjin Medical University function room, clinical diagnosis of temporal lobe epilepsy group (aged 19 to 47 years old), normal control group (aged 24 to 30 years). All 8 cases of epileptogenic focus were located in the anterior temporal region (scalp electrodes F7, F8) were collected. Period of intermittent temporal lobe epilepsy pre ictal and normal control group 4 group 10, 16 channel EEG every 10 seconds (EEGs) data.
2 data preprocessing: baseline drift and power frequency interference to EEGs, and Matlab FastICA algorithm to remove obvious artifacts.
3 time frequency analysis of EEGs: one by one channel based on short time Fourier transform time-frequency analysis, temporal lobe epilepsy group of intermittent period, maximum energy channel before the attack, attack analysis and control group when the frequency of EEGs, get the main frequency range of seizure period from 6 and 0.
4 the band pass filter is used to obtain the Delta and 0 band components of EEGs.
5 the Granger frequency domain causality analysis of the 6 and 0 band components of each 1 segments of EEGs in 4 groups was analyzed, respectively.
(1) frequency domain causality analysis for 16 channel EEGs time series. We calculate the causal value ij between two nodes, and get the Directed Transfer Function (DTF) value after averaging.
(2) the causality network is constructed with gamma ij, and the BC measurement value (Betweenness Centrality, BC) of the network is calculated.
(3) K mean clustering analysis of BC value:
The temporal lobe epilepsy group intermittent period, early attack, attack the whole process of the BC measure of K clustering, every node in the network will be divided into two categories: active and inactive node node, and the variation trend of the BC value respectively; and to attack the BC measure of K clustering analysis.
(4) calculate the causality density (Causal Density, CD) of the attack network:
The causal density values of each node in the temporal lobe epilepsy group were calculated, and the K density clustering analysis of the causal density values was compared with the active nodes in the BC period.
(5) computing network causality flow (Causal Flow, CF):
The causal flow values of active nodes and inactive nodes in the attack phase are calculated, and the causal flow values corresponding to the nodes in the early stage and the active nodes are compared and analyzed.
The results of the study:
1 time frequency distribution: the energy of the temporal lobe epilepsy is concentrated at low frequency segments: Delta and 0 frequency bands.
Frequency domain functional connection of 24 groups of multichannel EEG
(1) 6 frequency bands:
Temporal lobe epilepsy group: DTF mean (7.3404 + 1.9629) in intermission, DTF mean (4.8755 + 1.0541) in pre attack, and DTF mean (8.1770 + 1.6978) at attack stage.
The mean value of DTF in the normal control group was (2.1591 + 0.5561).
(2) frequency band:
Temporal lobe epilepsy group: DTF value in intermission (8.1263 + 0.4356), DTF value (3.5955 + 0.8756) in pre attack and DTF (8.2826 + 0.4899) at attack stage.
The value of DTF in the normal control group was (2.7373 + 0.6542).
3 temporal lobe epilepsy group intermission, K mean cluster analysis of BC measurement at prophase and episodes
(1) active node in 6 frequency band, BC measure (0.0499 + 0.0149) in intermittent period, BC measure (0.0469 + 0.0095) in pre attack, and BC measure (0.0800 + 0.0200) at attack stage.
(2) active node in 0 frequency band, BC measure (0.0467 + 0.0108) in intermittent period, BC measure (0.0437 + 0.0076) in pre attack, and BC measure (0.0651 + 0.0126) at attack stage.
Comparison of BC and CD values of temporal lobe epilepsy group in 4 temporal lobe epilepsy group by K mean cluster analysis
In every band of delta and 0, the coincidence rate of active nodes and active nodes of BC value is very high. The coincidence rate between them is the same, or the former includes the latter, or the latter includes the former; the location of the CD is not consistent with the location of epileptogenic foci.
Causality flow analysis of active nodes in the 5 temporal lobe epilepsy group
(1) delta band ictal active node CF values (0.6864 + 0.3037), intermittent period, regional CF early attack and active node value corresponding to (0.1495 + 0.1358), (0.1174 + 0.0648) were tested with normal distribution, exacerbation of active node CF respectively and intermittent period, hair area the CF value corresponding to the t test, P0.05, there were significant differences.
(2) 0 band ictal active node CF values (0.6661 + 0.1645), intermittent period, regional CF early attack and active node value corresponding to (0.0774 + 0.1973), CF (0.1489 + 0.0570), after verification with normal distribution, exacerbation of active node CF respectively and intermittent period, attack region pre CF value corresponding to the t test, P0.05, there were significant differences.
Conclusion:
1 the energy concentration band of temporal lobe epilepsy is delta and 0 frequency bands.
2 temporal lobe epilepsy onset period than the intermittent period, connecting the characteristics to enhance the early attack; attack than the normal control group functional connectivity enhancements; intermittent period and early attack functional connectivity had no significant difference; intermittent period, interictal than the normal control group the function of connection characteristics increase.
3 the BC measurement values of active node causality network in temporal lobe epilepsy were more than that in the intermission period, the pre attack increased, and there was no significant difference in the BC measurement between the intermittent period and the pre attack stage.
4 the active nodes of temporal lobe epilepsy are similar to the active nodes according to the K mean clustering analysis of the causal density and the BC measure respectively.
5 the causality flow value of active node in temporal lobe epilepsy is larger than that of causality, and the value of causality flow of non active node is smaller than that of causality.
【學(xué)位授予單位】:天津醫(yī)科大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:R742.1
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王建偉;榮莉莉;郭天柱;;一種基于局部特征的網(wǎng)絡(luò)節(jié)點(diǎn)重要性度量方法[J];大連理工大學(xué)學(xué)報(bào);2010年05期
2 孫俊峰;洪祥飛;童善保;;復(fù)雜腦網(wǎng)絡(luò)研究進(jìn)展——結(jié)構(gòu)、功能、計(jì)算與應(yīng)用[J];復(fù)雜系統(tǒng)與復(fù)雜性科學(xué);2010年04期
3 李勇;譚躍進(jìn);吳俊;;基于任務(wù)時(shí)間約束的物流保障網(wǎng)絡(luò)級(jí)聯(lián)失效抗毀性建模與分析[J];系統(tǒng)工程;2009年05期
4 李慧;王宗鋒;;虛擬社區(qū)中意見(jiàn)領(lǐng)袖的識(shí)別模型研究[J];電化教育研究;2013年02期
5 鄭遼吉;馬廷玉;;遼寧省海島旅游關(guān)鍵創(chuàng)新能力評(píng)價(jià)[J];遼東學(xué)院學(xué)報(bào)(社會(huì)科學(xué)版);2013年05期
6 劉陽(yáng);季新生;劉彩霞;;網(wǎng)絡(luò)社區(qū)發(fā)現(xiàn)優(yōu)化:基于隨機(jī)游走的邊權(quán)預(yù)處理方法[J];電子與信息學(xué)報(bào);2013年10期
7 高源;;基于郵箱活躍度的郵件社區(qū)劃分研究[J];計(jì)算機(jī)光盤(pán)軟件與應(yīng)用;2013年19期
8 Linda Dirven;Neil K.Aaronson;Jan J.Heimans;Martin J.B.Taphoorn;;Health-related quality of life in high-grade glioma patients[J];Chinese Journal of Cancer;2014年01期
9 朱鳳輝;樊瑛;;基于電阻網(wǎng)絡(luò)的節(jié)點(diǎn)重要性判別[J];北京師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年06期
10 郭焱;張強(qiáng);;應(yīng)用共引分析的戰(zhàn)略聯(lián)盟研究[J];重慶理工大學(xué)學(xué)報(bào)(自然科學(xué));2014年03期
相關(guān)會(huì)議論文 前1條
1 譚躍進(jìn);呂欣;吳俊;鄧宏鐘;;復(fù)雜網(wǎng)絡(luò)抗毀性研究的主要科學(xué)問(wèn)題[A];和諧發(fā)展與系統(tǒng)工程——中國(guó)系統(tǒng)工程學(xué)會(huì)第十五屆年會(huì)論文集[C];2008年
相關(guān)博士學(xué)位論文 前10條
1 杜方;復(fù)雜網(wǎng)絡(luò)系統(tǒng)間相似性識(shí)別及其應(yīng)用[D];浙江大學(xué);2010年
2 潘淑文;加權(quán)復(fù)雜網(wǎng)絡(luò)抗毀性及其故障恢復(fù)技術(shù)研究[D];北京郵電大學(xué);2011年
3 錢(qián)愛(ài)玲;復(fù)雜結(jié)構(gòu)的時(shí)間序列數(shù)據(jù)挖掘與預(yù)測(cè)方法研究[D];華中科技大學(xué);2011年
4 黃建華;復(fù)雜快遞網(wǎng)絡(luò)的優(yōu)化方法及抗毀性能研究[D];大連理工大學(xué);2012年
5 顧亦然;基于復(fù)雜網(wǎng)絡(luò)理論的信息網(wǎng)絡(luò)關(guān)鍵技術(shù)的研究[D];南京郵電大學(xué);2010年
6 王亞奇;多傳播因素的復(fù)雜網(wǎng)絡(luò)病毒傳播及免疫策略研究[D];南京郵電大學(xué);2011年
7 陳迎迎;一類服務(wù)網(wǎng)格系統(tǒng)的分布式調(diào)度問(wèn)題研究[D];浙江大學(xué);2011年
8 石煥;功率驅(qū)動(dòng)移動(dòng)智能體網(wǎng)絡(luò)的同步分析與控制[D];浙江大學(xué);2011年
9 甘建超;混沌信號(hào)處理在雷達(dá)和通信對(duì)抗中的應(yīng)用[D];電子科技大學(xué);2004年
10 章忠志;復(fù)雜網(wǎng)絡(luò)的演化模型研究[D];大連理工大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 杜艷;幾類網(wǎng)絡(luò)模型及路由算法研究[D];山東師范大學(xué);2011年
2 杜雅紅;基于云計(jì)算平臺(tái)的圖算法研究[D];北京郵電大學(xué);2011年
3 顧冠;“情緒面孔”和“情緒肢體語(yǔ)言”文互認(rèn)知的神經(jīng)電生理研究[D];上海交通大學(xué);2012年
4 葉立;基于靶點(diǎn)數(shù)據(jù)對(duì)治療心血管疾病的中西藥治病機(jī)理的比較[D];華東理工大學(xué);2011年
5 林珊珊;降低擁塞率和支持資源均衡利用的新型光網(wǎng)絡(luò)研究[D];大連理工大學(xué);2011年
6 靳靜;大腦中的負(fù)激活及其網(wǎng)絡(luò)研究[D];大連理工大學(xué);2006年
7 秦瓊;復(fù)雜網(wǎng)絡(luò)演化模型的研究[D];大連海事大學(xué);2007年
8 陳盛輝;具有高集群的加權(quán)無(wú)標(biāo)度網(wǎng)絡(luò)建模分析[D];福建師范大學(xué);2007年
9 胡國(guó)標(biāo);漢語(yǔ)言網(wǎng)絡(luò)統(tǒng)計(jì)特性與半監(jiān)督文檔聚類算法研究[D];復(fù)旦大學(xué);2008年
10 郭天柱;復(fù)雜網(wǎng)絡(luò)中心性及其對(duì)災(zāi)害傳播影響的研究[D];大連理工大學(xué);2009年
,本文編號(hào):1605586
本文鏈接:http://sikaile.net/yixuelunwen/shenjingyixue/1605586.html