孕中期大鼠母體氨胺酮麻醉致子鼠海馬發(fā)育異常及情緒障礙
本文選題:氯胺酮 + 腦發(fā)育; 參考:《南方醫(yī)科大學(xué)》2014年碩士論文
【摘要】:研究背景: 近年來,大量實(shí)驗(yàn)研究均證實(shí)了常用全麻藥比如氯胺酮、七氟醚、異氟醚等對嚙齒類和靈長類動物發(fā)育期的大腦具有神經(jīng)毒性,可致一系列病理形態(tài)學(xué)及神經(jīng)電生理學(xué)的改變:(1)可致神經(jīng)細(xì)胞內(nèi)鈣穩(wěn)態(tài)失衡,線粒體功能障礙,多腦區(qū)神經(jīng)細(xì)胞凋亡;(2)抑制神經(jīng)細(xì)胞增殖;(3)損傷神經(jīng)元骨架結(jié)構(gòu),阻礙神經(jīng)元骨架結(jié)構(gòu)形成,影響突觸的發(fā)育,致突觸形成障礙;(4)阻礙膠質(zhì)細(xì)胞生長,影響其成熟;(5)影響海馬的長時程增強(qiáng)(LTP)等。且與形態(tài)學(xué)及神經(jīng)電生理學(xué)損害相一致的結(jié)果是,全麻藥可導(dǎo)致遠(yuǎn)期的認(rèn)知功能障礙。臨床回顧性研究也表明在四歲之前接受過麻醉和手術(shù)的兒童,出現(xiàn)遠(yuǎn)期讀寫及計算能力障礙的風(fēng)險性增加,人們越來越關(guān)注常用的全麻藥對發(fā)育期大腦的安全性。目前大多數(shù)關(guān)于全麻藥神經(jīng)毒性損害所致的遠(yuǎn)期神經(jīng)行為學(xué)異常的研究,主要集中于認(rèn)知功能損害,比如記憶力、讀寫及計算能力的損害,而忽略了行為學(xué)異常的另外一個重要的方面,即情緒障礙。關(guān)于情緒與認(rèn)知關(guān)系的研究,近年來引起了學(xué)者們極大的關(guān)注,一般認(rèn)為情緒障礙與認(rèn)知障礙的關(guān)系非常復(fù)雜,二者既可以共存也可以單獨(dú)存在,且相互影響,相互作用。對于情緒障礙與認(rèn)知障礙的病因病理機(jī)制及二者發(fā)生發(fā)展的順序尚不明確,認(rèn)知障礙(如記憶力損害)可能只是情緒障礙的一個癥狀或者說是病情發(fā)展到一定程度的結(jié)果而已。此外,關(guān)于全麻藥對發(fā)育期大腦神經(jīng)毒性的研究多集中在出生后發(fā)育期的(近似于人類新生兒期、兒童期)動物大腦,而孕期母體麻醉對宮內(nèi)胎兒神經(jīng)發(fā)育影響的研究則比較少。既往孕期全麻藥毒性的研究主要是孕早期全麻藥的致畸作用和分娩期母體麻醉用藥對新生兒器官功能狀態(tài)的影響,而孕中期全麻藥對胎兒神經(jīng)發(fā)育影響的研究很少。由于孕早期手術(shù)麻醉有發(fā)生致畸、流產(chǎn)的可能,大多數(shù)觀點(diǎn)認(rèn)為母體孕中期手術(shù)麻醉是一個相對安全時期。事實(shí)上,人類神經(jīng)元增殖及遷移在孕中期開始加速并在孕中期后達(dá)到高峰,突觸形成期即“易損期”始于孕中期一直持續(xù)至出生后的幾年。臨床使用的全麻藥大多為脂溶性的,易透過胎盤進(jìn)入胎兒血液循環(huán),再通過血液循環(huán)系統(tǒng)作用于胎兒大腦,可能會對其生長發(fā)育產(chǎn)生各種不良影響。目前每年大約有0.75%-2%的孕婦在懷孕期間需要行外科手術(shù)治療(比如闌尾和膽囊急性炎癥、卵巢腫瘤、外傷等),這些手術(shù)多為不可避免的手術(shù)。而且,隨著外科的發(fā)展,腹腔鏡手術(shù)的日漸增多及胎兒手術(shù)的逐漸開展使孕期手術(shù)適應(yīng)癥不斷增加,這個數(shù)字將會越來越大。因此母體孕中期麻醉對胎兒大腦發(fā)育造成的危害尤其值得關(guān)注。 氯胺酮是一種臨床常用的全身麻醉藥物,經(jīng)典的NMDA受體拮抗劑。盡管它在發(fā)達(dá)國家已經(jīng)不再使用,但在發(fā)展中國家的臨床麻醉、鎮(zhèn)痛鎮(zhèn)靜中仍發(fā)揮著很大的作用。而且近年在亞太地區(qū)尤其是中國和印度,氯胺酮娛樂場所濫用情況急劇增加。其復(fù)雜的藥理藥效及毒副作用,如致精神分裂、致幻和認(rèn)知功能損害等也引起人們的關(guān)注。 本研究模擬孕中期產(chǎn)婦非產(chǎn)科手術(shù)麻醉,給予孕中期大鼠氯胺酮麻醉,兼顧母體、胎盤、孕周期、手術(shù)刺激等諸多因素,觀察孕中期氯胺酮麻醉對子代鼠成年后認(rèn)知功能和情緒的影響以及對出生后海馬發(fā)育的影響,研究其毒性可能的分子機(jī)制。對指導(dǎo)孕中期相對安全的全麻藥物選擇、麻醉方案及防治措施,具有重大意義。 實(shí)驗(yàn)?zāi)康模?通過一系列行為學(xué),即糖水偏好實(shí)驗(yàn)(SPT)、曠場實(shí)驗(yàn)(OFT)測試、水迷宮實(shí)驗(yàn)(WMT)、強(qiáng)迫游泳實(shí)驗(yàn)(FST),觀察孕中期大鼠母體氯胺酮靜脈麻醉對子鼠認(rèn)知功能和情緒的影響;通過Western Blot檢測子鼠海馬區(qū)門冬氨酸(NMDA)受體亞基NRl、NR2A、NR2B及其下游效應(yīng)因子腦源性營養(yǎng)因子(BDNF).突觸后密度蛋白-95(PSD-95)的表達(dá):應(yīng)用溴脫氧嘧啶(BrdU)標(biāo)記技術(shù)標(biāo)記成年子代鼠海馬齒狀回(DG)和室管膜下區(qū)(SVZ)神經(jīng)元以觀察神經(jīng)元增殖情況;應(yīng)用高爾基銀浸染色技術(shù)和尼氏染色觀察子鼠海馬區(qū)神經(jīng)元的形態(tài)學(xué)改變,研究和探討母體氯胺酮麻醉對子代鼠神經(jīng)毒性的相關(guān)機(jī)制。實(shí)驗(yàn)方法: 12只成年雌性SD處鼠,體重約180-220g,適應(yīng)性飼養(yǎng)一周后,晚上7:00和有性經(jīng)驗(yàn)的雄性SD大鼠進(jìn)行交配,次日早晨行陰道圖片檢查(鏡下見到精子記為孕0天,即GO)。將孕鼠飼養(yǎng)至G14隨機(jī)等分為2組:對照組(C,n=6)和氯胺酮組(K,n=6)。C組孕鼠不做任何處理,K組孕鼠經(jīng)右側(cè)大腿后部肌群肌肉注射氯胺酮40mg/kg,遂用24G套管針從尾靜脈置管,接微量注射泵,以40~60mg/kg.h的速度持續(xù)靜脈泵注氯胺酮(生理鹽水稀釋至10mg/ml)2h.隨時調(diào)整輸注速度使孕鼠處于深度鎮(zhèn)靜至輕度外科水平麻醉的狀態(tài),即孕鼠無自主運(yùn)動,肌肉松弛,對疼痛刺激存在反應(yīng),眼瞼反射消失。術(shù)中使用電加熱板使母鼠體溫維持在36.5-37.5℃,同時觀察呼吸幅度、頻率及口唇粘膜顏色。麻醉結(jié)束,待孕鼠翻正反射恢復(fù)后送回鼠籠繼續(xù)飼養(yǎng)。至G22,各組隨機(jī)選取3只孕鼠腹腔注射溴脫氧嘧啶(50mg/kg),2h后剖腹取子鼠大腦行免疫組化檢測DG和SVZ區(qū)BrdU陽性細(xì)胞數(shù)目,余孕鼠等待自然分娩(記為P0),出生后約6h隨機(jī)取各母鼠的2只子鼠大腦行Nissl染色,其余子鼠飼養(yǎng)至21天斷奶,繼續(xù)飼養(yǎng)至P25天。至P25,將各組子鼠隨機(jī)分為兩批(n=11/10,3-4只/母鼠)進(jìn)行連續(xù)3天的行為學(xué)測試,一批行水迷宮(WMT)測試和糖水偏好實(shí)驗(yàn)(SPT),一批行曠場實(shí)驗(yàn)(OFT)和強(qiáng)迫游泳(FST)。行為學(xué)結(jié)束后,隨機(jī)取6只子鼠(2只/母鼠)斷頭處死后取大腦制備石蠟切片行Nissl染色檢測海馬CA1及CA3區(qū)神經(jīng)元密度;隨機(jī)取5只子鼠(1-2只/母鼠)腹腔注射溴脫氧嘧啶(50mg/kg),連續(xù)3天,末次注射12h后斷頭處死制備冰凍切片,行免疫組化檢測DG和SVZ區(qū)BrdU陽性細(xì)胞數(shù)目;隨機(jī)取3只子鼠(1只/母鼠)斷頭處死后,快速取大腦行高爾基銀浸染色分別觀察海馬CA1、CA3錐體細(xì)胞樹突分支數(shù)目、總樹突長度、樹突空間分布情況、及突觸棘密度;隨機(jī)取3只子鼠(1只/母鼠)斷頭處死后,在冰面上快速取海馬組織行Western Blot檢測NMDA受體亞基NR1、NR2A、NR2B,及其下游效應(yīng)因子BDNF、PSD-95蛋白表達(dá)情況。此外,在另一組實(shí)驗(yàn)中,取3只G14雌鼠和年齡相當(dāng)?shù)?只未孕雌鼠,行相同的氯胺酮靜脈麻醉處理,麻醉完畢立即經(jīng)左心室取動脈血行血?dú)夥治?此組母鼠不在參與后續(xù)的實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)果: 1.所有氯胺酮靜脈麻醉的雌鼠麻醉及蘇醒過程平穩(wěn),無呼吸抑制等異常情況出現(xiàn),血?dú)夥治鲲@示各項(xiàng)生理指標(biāo)均在正常范圍內(nèi),且兩組子鼠各項(xiàng)指標(biāo)差異無統(tǒng)計學(xué)意義(P0.05)。P28時,氯胺酮組子鼠體重顯著低于對照組子鼠(P0.01)。氯胺酮組兩只體重偏低的(分別為36g、44g)子鼠不再參與后繼的實(shí)驗(yàn)。 2.P25-P30時,行為學(xué)結(jié)果表明氯胺酮組子鼠呈現(xiàn)出抑郁和焦慮樣情緒障礙,且伴有學(xué)習(xí)記憶力的損害。具體表現(xiàn)為:在SPT中,兩組子鼠總液體飲用量的差異無統(tǒng)計學(xué)意義(P0.05),但是和對照組子鼠相比,氯胺酮組子鼠糖水飲用率顯著下降(P0.05);在FST中,和對照組子鼠相比,氯胺酮組子鼠不動時間顯著延長(P0.05);在OFT中,兩組子鼠運(yùn)動總距離和平均運(yùn)動速度的差異均無統(tǒng)計學(xué)意義(P0.05),但是氯胺酮組子鼠穿越中心區(qū)的次數(shù)和逗留于中心區(qū)的時間顯著減少(P0.05);在WMT中,氯胺酮組子鼠找到平臺的潛伏期顯著延長(P0.01)。這些行為學(xué)結(jié)果表明,孕中期母體氯胺酮麻醉可致子鼠抑郁和焦慮樣表現(xiàn)及學(xué)習(xí)記憶力損害。 3.在P0和P30時,和對照組子鼠相比,氯胺酮組子鼠海馬CA3區(qū)細(xì)胞密度顯著下降,P0時下降了23%,P30時下降了21%(P0,P0.01;P30,P0.05),兩組子鼠CA1區(qū)椎體細(xì)胞密度差異均無統(tǒng)計學(xué)意義(P0.05);P30時,氯胺酮組子鼠海馬CA3區(qū)椎體細(xì)胞樹突總長度顯著短于對照組子鼠(P0.01),錐體細(xì)胞樹突分支數(shù)目顯著減少(P0.01)及突觸棘密度顯著下降(P0.05),Sholl分析示氯胺酮組子鼠CA3椎體細(xì)胞樹突與各半徑的同心圓交點(diǎn)數(shù)目顯著減少(P0.01)。這些數(shù)據(jù)表明,CA3區(qū)對氯胺酮的損害更加敏感,孕中期母體氯胺酮麻醉致海馬發(fā)育異常,海馬CA3區(qū)(而不是CA1區(qū))椎體細(xì)胞缺失及錐體細(xì)胞發(fā)育成熟障礙,突觸形成障礙。 4.PO和P30時,和對照組子鼠相比,氯胺酮組子鼠DG和SVZ區(qū)BrdU陽性細(xì)胞數(shù)目顯著低于對照組子鼠(PO-DG, P0.05, PO-SVZ, P0.01; P30-DG,P0.05,P30-SVZ,P0.05)。在P30時,氯胺酮組子鼠DG和SVZ區(qū)BrdU陽性細(xì)胞數(shù)目顯著低于對照組,且BrdU/DCX雙標(biāo)陽性細(xì)胞數(shù)目和BrdU陽性細(xì)胞數(shù)目比值顯著低于對照組子鼠,但是只有DG區(qū)的差異有統(tǒng)計學(xué)意義(P0.01)。孕中期母體氯胺酮麻醉可致子鼠細(xì)胞增殖及神經(jīng)元增殖下降。 5.P30時,和對照組子鼠相比,氯胺酮組子鼠海馬NMDA受體亞基NR2A表達(dá)顯著升高(P0.05),NR2B表達(dá)顯著下降,少于對照組的1/4(P0.01),NRl差異無統(tǒng)計學(xué)意義(P0.05),而且氯胺酮組子鼠海馬BDNF、PSD-95的蛋白表達(dá)顯著下降,其中PSD-95的蛋白表達(dá)少于對照組的三分之-(BDNF,P0.05; PSD-95, P0.01)。說明孕中期母體氯胺酮麻醉導(dǎo)致NMDA受體亞基表達(dá)紊亂,從而影響其功能,并導(dǎo)致其下游效應(yīng)因子BDNF、PSD-95表達(dá)下調(diào),抑制mTOR信號轉(zhuǎn)道通路。 實(shí)驗(yàn)結(jié)論: 在孕中期,母體氯胺酮麻醉可導(dǎo)致胎兒大腦損傷,子鼠出生后直至成年齒狀回及室管膜下區(qū)細(xì)胞增殖減少,海馬CA3區(qū)細(xì)胞缺失,且成年后CA3區(qū)錐體細(xì)胞發(fā)育障礙;成年后的神經(jīng)行為學(xué)異常,呈抑郁和焦慮樣表現(xiàn)及記憶力損害。其機(jī)制可能與海馬NMDA亞基受體紊亂致NMDA受體功能低下,致其下游效應(yīng)因子BDNF、PDS-95表達(dá)下降,下調(diào)nTOR信號轉(zhuǎn)道通路,導(dǎo)致海馬神經(jīng)元發(fā)育異常有關(guān)。
[Abstract]:Research background:
In recent years, a large number of experimental studies have confirmed that common anesthetics such as ketamine, sevoflurane and isoflurane have neurotoxicity to the brain of rodents and primates, which can lead to a series of changes in pathomorphology and neurophysiology: (1) the homeostasis of intracellular calcium homeostasis, mitochondrial dysfunction, and multi brain region deity can be caused. Apoptosis; (2) inhibiting the proliferation of nerve cells; (3) damage to the skeleton structure of neurons, hindering the formation of the skeleton structure, affecting the development of synapses, causing synapse formation obstacles; (4) hindering the growth of glial cells and affecting its maturation; (5) affecting the long term enhancement of the hippocampus (LTP), and in accordance with the morphological and neurophysiological damage. The result is that total anesthetics can lead to long-term cognitive impairment. Clinical retrospective studies also show that children who have been anesthetized and operated before four years of age have increased risk of long-term reading and writing and calculation disorders, and people are increasingly concerned about the safety of the common anesthetics for the development of the brain. The study of long-term neurobehavioral abnormalities caused by toxic damage mainly focuses on cognitive impairment, such as memory, reading and writing and the impairment of computational ability, while neglecting another important aspect of behavioral disorders, namely, emotional disorders. The research on the relationship between emotion and cognition has aroused great concern in recent years. The relationship between emotional disorders and cognitive impairment is very complex. The two can exist and exist alone, and they interact and interact with each other. The pathogenesis of the causes of emotional disorders and cognitive impairment and the order of the development of the two are not clear, and cognitive impairment (such as memory impairment) may be a symptom of emotional disorder. Or it is the result of a certain degree of development. In addition, the study of the neurotoxicity of total anesthetics on the developmental stage of the brain is mostly concentrated in the postnatal period (similar to the human neonatal period, childhood) of the animal brain, while the maternal anaesthesia has fewer studies on the effects of the maternal anaesthesia on the intrauterine fetal neurodevelopment. The effects of the teratogenicity of total anesthetic in the early pregnancy and the maternal anesthetic medication at the stage of childbirth on the state of the organ function of the newborns, and few studies on the influence of the mid trimester total anesthetics on the fetal nerve development. It is a period of relative safety. In fact, the proliferation and migration of human neurons begin to accelerate in the middle of the pregnancy and reach the peak after the mid pregnancy. The synaptic formation period, that is, the "vulnerable period" begins in the middle of the pregnancy to a few years after birth. Most of the clinical total anesthetics are fat soluble and easy to enter the fetal blood circulation through the placenta. The blood circulation system acts on the fetal brain and may have a variety of adverse effects on the growth and development of the fetus. At present, about 0.75%-2% of pregnant women need surgical treatment (such as acute appendix and gallbladder inflammation, ovarian tumors, trauma, etc.) during pregnancy. These hands are mostly unavoidable operations. The exhibition, laparoscopic surgery and fetal surgery is increasing gradually to carry out surgical indications during pregnancy is increasing, the number will be more and more. So the second trimester maternal anesthesia on fetal brain development caused by the harm of particular concern.
Ketamine is a commonly used general anesthesia drug, a classic NMDA receptor antagonist. Although it is no longer used in developed countries, it still plays a significant role in clinical anesthesia and analgesia in developing countries. In recent years, the abuse of ketamine in entertainment places in the Asia Pacific region, especially in China and India, has increased dramatically. In addition, its complex pharmacological effects and side effects, such as schizophrenia, hallucination and cognitive impairment, have attracted much attention.
This study simulated the non obstetric anesthesia in the midtrimester of pregnant women, given ketamine anesthesia in the mid-term rats, given consideration to many factors such as maternal body, placenta, pregnancy cycle, and surgical stimulation, and observed the effects of ketamine anesthesia on the cognitive function and emotion of the adult rats in the middle of pregnancy and the effect on the development of the hippocampus after birth, and studied the possible toxic molecules. The mechanism is of great significance to the selection of anesthetic drugs for general safety during the second trimester.
Objective:
Through a series of behavioural studies, such as sugar water preference test (SPT), open field experiment (OFT) test, water maze test (WMT) and forced swimming test (FST), the effects of ketamine intravenous anesthesia on the cognitive function and emotion of the rats in the mid-term pregnancy were observed. The Western Blot was used to detect the NMDA receptor subunit NRl, NR2A, NR2B and the Western Blot, and The downstream effect factor brain derived nutrition factor (BDNF) and the expression of postsynaptic density protein -95 (PSD-95): using bromodeoxypyrimidine (BrdU) labeling technique to mark the hippocampal dentate gyrus (DG) and subventricular subregion (SVZ) neurons of adult offspring to observe the proliferation of neurons, and observe Zi Shuhai with Golgi leaching and Nissl staining. The morphological changes of neurons in the hippocampus were studied to explore the mechanism of the neurotoxicity of maternal ketamine anesthesia on offspring rats.
12 adult female SD rats, weighing about 180-220g, were bred for one week after adaptation, at 7:00 p. m. and sexually experienced male SD rats. The next morning, a vaginal picture was performed (the sperm was found to be 0 days of pregnancy, that is, GO). The pregnant rats were fed to G14 randomly and divided into 2 groups: the control group (C, n=6) and the ketamine group (K, n=6).C group did not do it. In any treatment, the pregnant rats in group K were injected with ketamine 40mg/kg from the posterior muscle group of the right thigh, then the 24G cannula was inserted from the caudal vein to the microinjection pump, and the intravenous infusion of ketamine (diluted to 10mg/ml) 2h. at a rate of 40 to 60mg/kg.h (10mg/ml) 2h. at any time to adjust the rate of infusion at any time so that pregnant rats were in deep sedation to mild surgical anesthesia. The state of the pregnant rats was unautonomously movement, muscle relaxation, reaction to pain stimulation, and eyelid reflex disappearing. During the operation, electric heating plate was used to keep the body temperature of the mother rats at 36.5-37.5 C, while observing the amplitude, frequency and color of the lip mucous membrane. 3 pregnant rats were intraperitoneally injected with bromodeoxypyrimidine (50mg/kg). After 2h, the number of BrdU positive cells in DG and SVZ regions was detected by immunohistochemistry. The remaining pregnant rats were waiting for natural childbirth (P0). After birth, the brains of 2 rats in each mouse were stained with Nissl, and the remaining rats were fed to 21 days of weaning and continued to be kept to P25 days to P25, The rats were randomly divided into two groups (n=11/10,3-4 / female rats) for 3 consecutive days of behavioral test, a batch of water maze (WMT) test and sugar water preference test (SPT), a batch of open field experiments (OFT) and forced swimming (FST). After the end of the behavior, 6 rats (2 / mother rats) were randomly selected to take the brain to prepare the paraffin section for Nissl The density of neurons in the hippocampal CA1 and CA3 region was detected by staining, and 5 rats (1-2 rats) were randomly selected to be intraperitoneally injected with bromodeoxypyrimidine (50mg/kg) for 3 days. After the last injection of 12h, the frozen section was prepared by the end of 12h, and the number of BrdU positive cells in DG and SVZ region was detected by immunohistochemistry. After the death of 1 mice (1 / mother mice), the number of positive cells was taken quickly. The brain was stained with Golgi silver staining to observe the number of dendritic branches of the hippocampal CA1, CA3 pyramidal cells, the length of the total dendrites, the spatial distribution of dendrites, and the density of synaptic spines. After the 3 rats (1 rats) were randomly selected, the NMDA receptor subunit NR1, NR2A, NR2B, and the downstream effect of NMDA receptor subunit NR1, NR2A, NR2B, and the downstream effect were detected by Western Blot on the ice surface. In addition, in another group, 3 female G14 rats and 3 female rats of the same age were treated with the same ketamine intravenous anesthesia in another group of experiments. The blood gas analysis of the left ventricular arterial blood was done immediately after the anesthesia. This group of mice did not participate in the follow-up experiment. The results of the experiment were: 3
1. of the female rats with ketamine intravenous anesthesia, the anaesthesia and revival process were smooth and no respiratory inhibition appeared. The blood gas analysis showed that all the physiological indexes were in the normal range, and there was no significant difference between the two groups of rats (P0.05).P28, the weight of the ketamine group was significantly lower than that of the control group (P0.01). Two low weight (36g, 44g) mice were no longer involved in subsequent experiments.
At 2.P25-P30, the behavioral results showed that the rats in the ketamine group showed depression and anxiety like emotional disorders and the impairment of learning and memory. The specific manifestation was that there was no significant difference in total liquid drinking in the two groups of rats in SPT (P0.05), but compared with the control group, the drinking rate of sugar water in the ketamine group decreased significantly (P0. 05); in FST, the time of inactivity of rats in the ketamine group was significantly longer than that of the control group (P0.05); in OFT, there was no significant difference in the total distance between the two groups of rats and the average speed of movement (P0.05), but the times of passing through the central area in the ketamine group and the time in the central area decreased significantly (P0.05); in WMT, Ketamine group were found the latency was significantly prolonged (P0.01). These behavioral results indicate that ketamine anesthesia can cause fetal second trimester maternal depression and anxiety related behavior and learning memory impairment.
3. at P0 and P30, compared with the control group, the cell density in the hippocampal CA3 area of the rats in the ketamine group decreased significantly, the P0 decreased by 23%, and the P30 decreased by 21% (P0, P0.01; P30, P0.05), and there was no significant difference in the density of the vertebral cells in the CA1 area of the two groups (P0.05), and the total length of the dendritic cells in the hippocampal vertebral body of the ketamine group was significant. Shorter than the control group (P0.01), the number of dendritic branches in pyramidal cells decreased significantly (P0.01) and the density of synaptic spines decreased significantly (P0.05). Sholl analysis showed that the number of concentric circles of the CA3 vertebral cell dendrites in the CA3 vertebral body of the group of ketamine group decreased significantly (P0.01). These data showed that the CA3 region was more sensitive to the damage of ketamine and the mother body in the middle pregnancy. Ketamine anesthesia induced hippocampal dysplasia, and CA3 cells in the hippocampus (not CA1) were deficient in vertebral cells and dysplasia in pyramidal cells.
4.PO and P30, compared with the control group, the number of BrdU positive cells in the DG and SVZ regions of the ketamine group was significantly lower than the control group (PO-DG, P0.05, PO-SVZ, P0.01; P30-DG, P0.05, P30-SVZ, and P30-SVZ). The number of U positive cells was significantly lower than the control group rats, but the difference was statistically significant only DG zone (P0.01). The second trimester maternal ketamine anesthesia can cause proliferation and neuronal cell proliferation were decreased.
5.P30, compared with the control group, the expression of NMDA receptor subunit NR2A in hippocampus of ketamine rats increased significantly (P0.05), NR2B expression decreased significantly, less than 1/4 (P0.01) in control group, NRl difference was not statistically significant (P0.05), and the expression of PSD-95 protein in hippocampal BDNF and PSD-95 was significantly decreased in ketamine group, and the expression of PSD-95 protein was less than that of control. A group of three cent - (BDNF, P0.05; PSD-95, P0.01). The second trimester maternal ketamine anesthesia resulted in NMDA receptor subunit expression disorder, which affects its function, and lead to the downstream effectors of BDNF, down-regulation of PSD-95 expression, inhibition of mTOR signal transduction pathway.
Experimental conclusions:
In the middle of the pregnancy, the maternal fetal brain damage can be caused by the maternal ketamine anesthesia. The proliferation of the cells in the dentate gyrus and the subependyma region of the adult rats is reduced, the cells in the hippocampal CA3 region are missing, and the pyramidal cell development disorder in the adult CA3 region; the adult neurobehavioral abnormalities are depressed and anxiety like and memory impairment. The mechanism can be found. With the hippocampal NMDA subunit receptor disorder induced by NMDA receptor dysfunction, caused by the downstream effectors of BDNF, decrease the expression of PDS-95 and downregulation of nTOR signal transduction pathway, resulting in abnormal development of hippocampal neurons
【學(xué)位授予單位】:南方醫(yī)科大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:R614
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 Urmila M Aswar;Padmaja P Kalshetti;Suhas M Shelke;Sharad H Bhosale;Subhash L Bodhankar;;Effect of newly synthesized 1,2,4-triazino[5,6-b]indole-3-thione derivatives on olfactory bulbectomy induced depression in rats[J];Asian Pacific Journal of Tropical Biomedicine;2012年12期
2 Aboyeji Lukuman Oyewole;Bamidele Victor Owoyele;;Long-term spatial memory and morphological changes in hippocampus of Wistar rats exposed to smoke from Carica papaya leaves[J];Asian Pacific Journal of Tropical Biomedicine;2014年03期
3 王璐;王飛清;王宇;高鴻;;七氟烷對新生大鼠海馬膠質(zhì)纖維酸性蛋白表達(dá)的影響[J];貴州醫(yī)藥;2014年04期
4 吳葒;高鴻;段宏偉;劉遠(yuǎn)馨;;七氟烷對新生大鼠海馬Bcl-2表達(dá)及學(xué)習(xí)記憶能力的影響[J];貴州醫(yī)藥;2014年05期
5 蓋海軍;王秀艷;袁念;黃慶軍;;成熟海馬神經(jīng)再生在抑郁癥及應(yīng)激發(fā)病機(jī)制中的作用[J];國際精神病學(xué)雜志;2014年04期
6 石書霞;沈書斌;董慧詠;張兆龍;懷喬;孟香果;;丙泊酚聯(lián)合瑞芬太尼在小兒腭裂手術(shù)中的應(yīng)用[J];河北醫(yī)藥;2013年20期
7 曾高峰;宗少暉;何建明;張志勇;魯力;肖德強(qiáng);;生姜提取物對Alzheimer病大鼠認(rèn)知功能障礙的作用及其機(jī)制[J];臨床神經(jīng)病學(xué)雜志;2013年05期
8 張璐;李昌林;楊周晶;趙璇;王英偉;;七氟醚麻醉對大鼠中樞神經(jīng)系統(tǒng)金屬硫蛋白mRNA表達(dá)的影響[J];臨床麻醉學(xué)雜志;2013年09期
9 王正蓉;包懷恩;;孕晚期感染弓形蟲prugniaud株對子代的影響[J];黑龍江畜牧獸醫(yī);2013年17期
10 錢燕寧;;麻醉對患者術(shù)后遠(yuǎn)期轉(zhuǎn)歸的影響[J];醫(yī)學(xué)研究生學(xué)報;2013年09期
相關(guān)會議論文 前4條
1 梁拓;周成華;武玉清;;全身麻醉藥對幼年動物神經(jīng)系統(tǒng)影響的研究進(jìn)展[A];全國第四次麻醉藥理學(xué)學(xué)術(shù)會議暨2013年貴州省麻醉學(xué)術(shù)年會論文匯編[C];2013年
2 龔濤武;朱昭瓊;;吸入麻醉對術(shù)后認(rèn)知功能障礙影響的研究現(xiàn)狀[A];全國第四次麻醉藥理學(xué)學(xué)術(shù)會議暨2013年貴州省麻醉學(xué)術(shù)年會論文匯編[C];2013年
3 王軍輝;喬金平;張彥波;;在慢性抑郁小鼠模型中去甲文拉法辛可以防止白質(zhì)損傷和改善膽固醇合成中限速酶的去磷酸化(英文)[A];創(chuàng)新驅(qū)動與轉(zhuǎn)型發(fā)展,推動汕頭騰飛——汕頭市科協(xié)第七屆學(xué)術(shù)年會優(yōu)秀論文集[C];2014年
4 SUN Shi-guang;SUN Rong;ZHANG Hui-yun;QIAO ming-qi;;The free-exploratory paradigm as a model of trait anxiety in Kunming mice:test-retest reliability[A];第十二屆全國青年藥學(xué)工作者最新科研成果交流會論文集[C];2014年
相關(guān)博士學(xué)位論文 前10條
1 石永勇;麝香酮對氯胺酮麻醉后乳鼠海馬神經(jīng)元發(fā)育的影響及相關(guān)機(jī)制研究[D];南方醫(yī)科大學(xué);2012年
2 槐雅萍;左旋丁苯酞對血管性癡呆小鼠認(rèn)知功能的影響及對PI3K/Akt信號轉(zhuǎn)導(dǎo)通路的作用[D];河北醫(yī)科大學(xué);2013年
3 張嶺;IRAS基因敲除小鼠的構(gòu)建及相互作用蛋白的篩選[D];中國人民解放軍軍事醫(yī)學(xué)科學(xué)院;2013年
4 楊文建;金針菇多糖的分離純化、結(jié)構(gòu)分析及其記憶功能改善作用機(jī)制研究[D];南京農(nóng)業(yè)大學(xué);2012年
5 曾育琦;雷公藤氯內(nèi)酯醇通過改善突觸可塑性、調(diào)節(jié)Aβ代謝、抑制神經(jīng)炎癥反應(yīng)減輕5XFAD轉(zhuǎn)基因小鼠的認(rèn)知損害[D];福建醫(yī)科大學(xué);2013年
6 栗洪師;當(dāng)歸芍藥散對牙移動導(dǎo)致大鼠疼痛和空間學(xué)習(xí)記憶改變的作用研究[D];中國人民解放軍醫(yī)學(xué)院;2013年
7 孫林;孕酮調(diào)控內(nèi)皮祖細(xì)胞水平促進(jìn)彌漫性軸索損傷大鼠神經(jīng)功能修復(fù)的實(shí)驗(yàn)研究[D];天津醫(yī)科大學(xué);2013年
8 張楠;Noggin和BDNF基因修飾的BMSCs、羥基紅花黃色素A、重復(fù)經(jīng)顱磁刺激對血管性癡呆大鼠作用機(jī)制的研究[D];天津醫(yī)科大學(xué);2011年
9 周柯;ANP及其受體在大鼠耳蝸螺旋神經(jīng)節(jié)的表達(dá)及分布特征[D];第四軍醫(yī)大學(xué);2013年
10 張婷;淫羊藿苷聯(lián)用三七總皂苷對AD模型鼠學(xué)習(xí)記憶的影響及其作用機(jī)制探討[D];中南大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 項(xiàng)麗陽;小鼠杏仁核焦慮相關(guān)神經(jīng)元介導(dǎo)藥物誘導(dǎo)的焦慮反應(yīng)[D];華東師范大學(xué);2013年
2 宿艷敏;Morris水迷宮實(shí)驗(yàn)中三種小鼠的學(xué)習(xí)能力及其性別差異[D];河北醫(yī)科大學(xué);2013年
3 陳翔;普羅布考對血管性癡呆大鼠海馬組織SOD、MDA影響的實(shí)驗(yàn)性研究[D];河北醫(yī)科大學(xué);2013年
4 羅曉莉;銀杏葉提取物對東莨菪堿致小鼠學(xué)習(xí)記憶障礙的作用[D];廣西師范大學(xué);2013年
5 臧宏剛;異氟烷對成年大鼠學(xué)習(xí)記憶功能的影響及其機(jī)制[D];遵義醫(yī)學(xué)院;2013年
6 龔濤武;全身麻醉患者術(shù)后認(rèn)知功能障礙的變化分析[D];遵義醫(yī)學(xué)院;2013年
7 楊祥思;慢性應(yīng)激對海馬功能和結(jié)構(gòu)的不對稱影響[D];浙江理工大學(xué);2013年
8 韓嬌;NR2A亞基過量表達(dá)對小鼠杏仁核突觸可塑性和情緒學(xué)習(xí)記憶的影響[D];華東師范大學(xué);2013年
9 唐佳琦;增塑劑鄰苯二甲酸二乙基己酯對昆明小鼠神經(jīng)行為學(xué)的影響[D];華中師范大學(xué);2013年
10 陳冠鋒;烏靈菌粉對癲癇持續(xù)狀態(tài)誘發(fā)大鼠空間記憶障礙的作用[D];浙江大學(xué);2012年
,本文編號:2045626
本文鏈接:http://sikaile.net/yixuelunwen/mazuiyixuelunwen/2045626.html