多孔結(jié)構(gòu)鈦種植體對周圍骨組織應(yīng)力分布影響的三維有限元分析
[Abstract]:BACKGROUND: Titanium implants are prone to produce stress shielding effect around the implants because their elastic modulus is much higher than that of the surrounding bone tissues, resulting in bone resorption and bone atrophy. The results show that the porous structure provides more space and surface area for osteocyte adhesion and growth, improves bone binding rate and has excellent biocompatibility. In addition, good biomechanical properties are also the key to the success of implants. Based on the previous research of our research group, the effects of different internal and external porosity of titanium implants on the stress distribution of different types of bone under different mechanical loads were analyzed in order to further evaluate the biomechanical properties of porous titanium implants, so as to compact the inner core and outer porous structure with different porosity. Methods: 1. Establish three kinds of bone mass, maxillary first premolar crown model, abutment and implant model. The implants were divided into five groups: solid, porosity 30% central pillar 1.5mm, porosity 30% central pillar 3.1mm, porosity 40% central pillar 1.5mm, porosity 40% central pillar 3.1mm. A 150 N vertical force was applied to the central fossa and a 50 N lateral force was applied to the oblique surface of the buccal tip and tongue to simulate the ultimate resultant force (114.6N in the axial direction, 17.1N in the buccal and tongue direction, 23.4N in the near and far directions). Results: 1. The stress distribution patterns of solid and porous titanium implants in different types of bone tissues were similar, i. e. the stress concentration area was mainly located in the cortical bone around the neck of the implant under vertical loading. 2. With the increase of porosity, the area of peak stress value of bone tissue around the implant decreases correspondingly. When the porosity reaches 40%, the area of peak stress value decreases more obviously. Under the same mechanical loading, it was observed that the maximum stress on the bone interface of porous titanium implants was greater than that on solid implants. The maximum stress at the bone interface around the implant under lateral loading is much higher than that under vertical loading. 4. With the increase of the porosity of the implant porous layer, the maximum stress at the bone interface increases; the thicker the porous layer, the larger the diameter of the intermediate pillar, the thicker the porous titanium implant with the same porosity. The maximum stress on the bone interface increases with the change of bone mass in both solid and porous implants. Conclusion: 1. Bone tissue around porous titanium implants was observed under different mechanical loads. The maximum stress of the bone around the implant increases with the increase of the pore structure. The maximum stress of the bone around the implant changes with the change of the bone mass, the lower the bone density, and the bone tissue around the implant bears the stress. The greater the maximum stress, the greater the stress produced by the lateral force on the bone tissue around the implant than the vertical force. 2. The denser the bone, the smaller the occlusal force, the more conducive the porous structure to stress transmission to the surrounding bone tissue than the solid structure, increasing the stress of the bone tissue around the implant to offset the stress shielding. 3. The more loose the bone, the less occlusal force. The greater the force value, the more cautious the use of porous structure implants, strictly control the lateral force and excessive occlusal force to prevent the occurrence of pathological load.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:R783.6
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 危小燕;;細(xì)胞水平骨組織吸收和沉積[J];國外醫(yī)學(xué).生物醫(yī)學(xué)工程分冊;1989年02期
2 孫磊;全逸先;;《骨組織庫管理》標(biāo)準(zhǔn)出臺 我國骨組織庫管理邁出第一步[J];中國衛(wèi)生標(biāo)準(zhǔn)管理;2010年05期
3 李章;;骨組織的無機(jī)和有機(jī)成分在~(239)钚代謝中的作用[J];國外醫(yī)學(xué)參考資料(放射醫(yī)學(xué)分冊);1978年03期
4 王金華;用非損傷方法研究長期低動態(tài)條件下骨組織的狀態(tài)[J];航天醫(yī)學(xué)與醫(yī)學(xué)工程;1988年02期
5 危小燕;;碰撞骨組織微觀力學(xué)模型[J];國外醫(yī)學(xué).生物醫(yī)學(xué)工程分冊;1989年02期
6 楊耀林,沈陽;介紹一種骨組織快速制片法[J];臨床與實(shí)驗(yàn)病理學(xué)雜志;1992年03期
7 孫慶妹,金巖,常青,楊連甲;微波技術(shù)在牙齒和骨組織標(biāo)本制備中的應(yīng)用[J];實(shí)用口腔醫(yī)學(xué)雜志;1993年04期
8 談勤明,朱靜;骨組織快速制片改良法[J];江西醫(yī)學(xué)院學(xué)報(bào);2004年06期
9 姜秀英,賴晃文,楊傳紅,江悅?cè)A,,劉連璞;含骨組織的電鏡樣品制備技術(shù)探討[J];第一軍醫(yī)大學(xué)學(xué)報(bào);1995年02期
10 陳元棟,陳同鈺,虞華明,萬曉莉;骨組織脫鈣的超聲處理[J];江西醫(yī)藥;2001年04期
相關(guān)會議論文 前10條
1 葉銘;張紹祥;王成燾;;力學(xué)虛擬人骨組織曲面模型重建及有限元建模技術(shù)[A];第八屆全國生物力學(xué)學(xué)術(shù)會議論文集[C];2006年
2 王軍;呂榮;;圖象融合重疊技術(shù)在骨組織顯微圖象采集中的應(yīng)用[A];第十一屆中國體視學(xué)與圖像分析學(xué)術(shù)會議論文集[C];2006年
3 彭若龍;錢夢
本文編號:2214900
本文鏈接:http://sikaile.net/yixuelunwen/kouq/2214900.html