天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 醫(yī)學(xué)論文 > 口腔論文 >

多孔結(jié)構(gòu)鈦種植體對(duì)周?chē)墙M織應(yīng)力分布影響的三維有限元分析

發(fā)布時(shí)間:2018-08-31 11:51
【摘要】:背景:鈦種植體因其彈性模量遠(yuǎn)高于周?chē)墙M織,而易在種植體周?chē)a(chǎn)生應(yīng)力遮蔽效應(yīng),造成種植體周的骨吸收和骨萎縮。為減輕鈦種植體的應(yīng)力遮蔽效應(yīng),許多學(xué)者通過(guò)在鈦種植體中構(gòu)建骨樣多孔結(jié)構(gòu),以降低種植體的彈性模量。研究表明多孔結(jié)構(gòu)為骨細(xì)胞黏附和生長(zhǎng)提供了更多的空間和表面積,提高骨結(jié)合率,具有優(yōu)良的生物相容性。此外,良好的生物力學(xué)性能也是種植體成功的關(guān)鍵。三維有限元分析法是國(guó)內(nèi)外研究種植體生物力學(xué)性能的有效方法之一。目的:本實(shí)驗(yàn)在課題組前期研究基礎(chǔ)上,通過(guò)分析內(nèi)部實(shí)心外部不同孔隙率的鈦種植體在不同力學(xué)負(fù)荷作用下對(duì)不同類型的骨質(zhì)應(yīng)力分布的影響,以進(jìn)一步評(píng)估多孔結(jié)構(gòu)鈦種植體的生物力學(xué)性能,從而為不同孔隙率的內(nèi)芯致密外層多孔結(jié)構(gòu)的鈦種植體的臨床應(yīng)用提供力學(xué)參考依據(jù)。方法:1.建立Ⅲ類骨骨塊、上頜第一前磨牙牙冠模型、基臺(tái)與種植體模型,種植體分為實(shí)心、孔隙率30%中央支柱1.5mm、孔隙率30%中央支柱3.1mm、孔隙率40%中央支柱1.5mm、孔隙率40%中央支柱3.1mm五組,分別合面中央窩施加150N垂直力,在頰尖舌斜面施加50N側(cè)向力、模擬極限合力(軸向114.6N,頰舌向17.1N,近遠(yuǎn)中向23.4N),評(píng)估不同負(fù)荷下多孔結(jié)構(gòu)鈦種植體周?chē)堑膽?yīng)力分布情況。2.建立Ⅰ類骨、Ⅱ類骨、Ⅲ類骨、Ⅳ類骨骨塊模型,種植體分組同方法1,模擬極限合力加載,評(píng)估多孔結(jié)構(gòu)鈦種植體對(duì)不同類型骨質(zhì)的應(yīng)力分布情況。結(jié)果:1.實(shí)心種植體和多孔結(jié)構(gòu)種植體在不同類型骨組織中的應(yīng)力分布模式相似,即垂直加載下應(yīng)力集中區(qū)域主要位于種植體頸部周?chē)钠べ|(zhì)骨,呈環(huán)形分布,.側(cè)向力加載下周?chē)墙M織應(yīng)力集中在頸部頰側(cè)皮質(zhì)骨,種植體中段及下段周?chē)墙M織所受應(yīng)力較為均勻。2.隨著孔隙率的增加,種植體周?chē)墙M織的高峰應(yīng)力值面積相應(yīng)減少,當(dāng)孔隙率達(dá)到40%時(shí),高峰應(yīng)力值面積減少得更為明顯。3.不同力學(xué)負(fù)荷加載下,各組模型中均觀察到多孔鈦種植體骨界面所承受的最大應(yīng)力值要大于實(shí)心結(jié)構(gòu)種植體。種植體周?chē)墙M織的最大應(yīng)力值均位于種植體頸部的皮質(zhì)骨;且隨著施加力學(xué)負(fù)荷的增大,各組種植體周?chē)墙M織的最大應(yīng)力也相應(yīng)增大。側(cè)向力加載下的種植體周?chē)墙缑嫠惺艿淖畲髴?yīng)力值要遠(yuǎn)高于垂直力加載下所受的應(yīng)力。4.隨著種植體多孔層孔隙率的增加,種植體骨界面的最大應(yīng)力值增加;相同孔隙率的多孔鈦種植體,多孔層越厚,即中間支柱直徑越小時(shí),其骨界面所受最大應(yīng)力值越大。5.無(wú)論是實(shí)心還是多孔結(jié)構(gòu)種植體,其周?chē)墙M織最大應(yīng)力值隨著骨質(zhì)的變化而變化,Ⅳ類骨Ⅲ類骨Ⅱ類骨Ⅰ類骨。結(jié)論:1.不同力學(xué)負(fù)荷加載下,各組模型中均觀察到多孔鈦種植體周?chē)墙M織所承受的最大應(yīng)力值要大于實(shí)心結(jié)構(gòu)種植體,且隨著孔隙結(jié)構(gòu)的增多,種植體周?chē)墙M織所受應(yīng)力也隨之增大。無(wú)論是實(shí)心還是多孔結(jié)構(gòu)種植體,其周?chē)墙M織最大應(yīng)力值均隨著骨質(zhì)的變化而變化,骨質(zhì)密度越低,種植體周?chē)墙M織所承受的最大應(yīng)力值越大。側(cè)向力對(duì)種植體周?chē)墙M織所產(chǎn)生的應(yīng)力比垂直力大。2.骨質(zhì)越致密,咬合力越小時(shí),多孔結(jié)構(gòu)相對(duì)實(shí)心結(jié)構(gòu)更有利于應(yīng)力向周?chē)墙M織傳導(dǎo),增加種植體周?chē)墙M織所承受的應(yīng)力,以抵消應(yīng)力遮蔽。3.骨質(zhì)越疏松,咬合力力值越大時(shí),對(duì)多孔結(jié)構(gòu)種植體的使用越要謹(jǐn)慎,嚴(yán)格控制側(cè)向力及過(guò)大咬合力,以防止病理性載荷的產(chǎn)生。
[Abstract]:BACKGROUND: Titanium implants are prone to produce stress shielding effect around the implants because their elastic modulus is much higher than that of the surrounding bone tissues, resulting in bone resorption and bone atrophy. The results show that the porous structure provides more space and surface area for osteocyte adhesion and growth, improves bone binding rate and has excellent biocompatibility. In addition, good biomechanical properties are also the key to the success of implants. Based on the previous research of our research group, the effects of different internal and external porosity of titanium implants on the stress distribution of different types of bone under different mechanical loads were analyzed in order to further evaluate the biomechanical properties of porous titanium implants, so as to compact the inner core and outer porous structure with different porosity. Methods: 1. Establish three kinds of bone mass, maxillary first premolar crown model, abutment and implant model. The implants were divided into five groups: solid, porosity 30% central pillar 1.5mm, porosity 30% central pillar 3.1mm, porosity 40% central pillar 1.5mm, porosity 40% central pillar 3.1mm. A 150 N vertical force was applied to the central fossa and a 50 N lateral force was applied to the oblique surface of the buccal tip and tongue to simulate the ultimate resultant force (114.6N in the axial direction, 17.1N in the buccal and tongue direction, 23.4N in the near and far directions). Results: 1. The stress distribution patterns of solid and porous titanium implants in different types of bone tissues were similar, i. e. the stress concentration area was mainly located in the cortical bone around the neck of the implant under vertical loading. 2. With the increase of porosity, the area of peak stress value of bone tissue around the implant decreases correspondingly. When the porosity reaches 40%, the area of peak stress value decreases more obviously. Under the same mechanical loading, it was observed that the maximum stress on the bone interface of porous titanium implants was greater than that on solid implants. The maximum stress at the bone interface around the implant under lateral loading is much higher than that under vertical loading. 4. With the increase of the porosity of the implant porous layer, the maximum stress at the bone interface increases; the thicker the porous layer, the larger the diameter of the intermediate pillar, the thicker the porous titanium implant with the same porosity. The maximum stress on the bone interface increases with the change of bone mass in both solid and porous implants. Conclusion: 1. Bone tissue around porous titanium implants was observed under different mechanical loads. The maximum stress of the bone around the implant increases with the increase of the pore structure. The maximum stress of the bone around the implant changes with the change of the bone mass, the lower the bone density, and the bone tissue around the implant bears the stress. The greater the maximum stress, the greater the stress produced by the lateral force on the bone tissue around the implant than the vertical force. 2. The denser the bone, the smaller the occlusal force, the more conducive the porous structure to stress transmission to the surrounding bone tissue than the solid structure, increasing the stress of the bone tissue around the implant to offset the stress shielding. 3. The more loose the bone, the less occlusal force. The greater the force value, the more cautious the use of porous structure implants, strictly control the lateral force and excessive occlusal force to prevent the occurrence of pathological load.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:R783.6

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 危小燕;;細(xì)胞水平骨組織吸收和沉積[J];國(guó)外醫(yī)學(xué).生物醫(yī)學(xué)工程分冊(cè);1989年02期

2 孫磊;全逸先;;《骨組織庫(kù)管理》標(biāo)準(zhǔn)出臺(tái) 我國(guó)骨組織庫(kù)管理邁出第一步[J];中國(guó)衛(wèi)生標(biāo)準(zhǔn)管理;2010年05期

3 李章;;骨組織的無(wú)機(jī)和有機(jī)成分在~(239)钚代謝中的作用[J];國(guó)外醫(yī)學(xué)參考資料(放射醫(yī)學(xué)分冊(cè));1978年03期

4 王金華;用非損傷方法研究長(zhǎng)期低動(dòng)態(tài)條件下骨組織的狀態(tài)[J];航天醫(yī)學(xué)與醫(yī)學(xué)工程;1988年02期

5 危小燕;;碰撞骨組織微觀力學(xué)模型[J];國(guó)外醫(yī)學(xué).生物醫(yī)學(xué)工程分冊(cè);1989年02期

6 楊耀林,沈陽(yáng);介紹一種骨組織快速制片法[J];臨床與實(shí)驗(yàn)病理學(xué)雜志;1992年03期

7 孫慶妹,金巖,常青,楊連甲;微波技術(shù)在牙齒和骨組織標(biāo)本制備中的應(yīng)用[J];實(shí)用口腔醫(yī)學(xué)雜志;1993年04期

8 談勤明,朱靜;骨組織快速制片改良法[J];江西醫(yī)學(xué)院學(xué)報(bào);2004年06期

9 姜秀英,賴晃文,楊傳紅,江悅?cè)A,,劉連璞;含骨組織的電鏡樣品制備技術(shù)探討[J];第一軍醫(yī)大學(xué)學(xué)報(bào);1995年02期

10 陳元棟,陳同鈺,虞華明,萬(wàn)曉莉;骨組織脫鈣的超聲處理[J];江西醫(yī)藥;2001年04期

相關(guān)會(huì)議論文 前10條

1 葉銘;張紹祥;王成燾;;力學(xué)虛擬人骨組織曲面模型重建及有限元建模技術(shù)[A];第八屆全國(guó)生物力學(xué)學(xué)術(shù)會(huì)議論文集[C];2006年

2 王軍;呂榮;;圖象融合重疊技術(shù)在骨組織顯微圖象采集中的應(yīng)用[A];第十一屆中國(guó)體視學(xué)與圖像分析學(xué)術(shù)會(huì)議論文集[C];2006年

3 彭若龍;錢(qián)夢(mèng)

本文編號(hào):2214900


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/kouq/2214900.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1e0f4***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com