天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 醫(yī)學論文 > 口腔論文 >

平臺轉(zhuǎn)移種植體骨界面應力分布三維有限元分析

發(fā)布時間:2018-07-07 18:47

  本文選題:三維有限元分析 + 平臺轉(zhuǎn)移。 參考:《河北醫(yī)科大學》2017年碩士論文


【摘要】:目的:口腔種植技術是目前臨床上針對牙齒缺失患者的較為理想的修復技術。一個讓人滿意的種植修復體應該具有良好的生物相容性和相應的力學相容性,可以和人體牙槽骨組織直接接觸形成骨結(jié)合,國內(nèi)外對種植體的研究主要集中在骨結(jié)合界面、種植體生物力學方面和種植體材料及表面工藝等方面,而平臺轉(zhuǎn)移種植體是近年來臨床上新發(fā)展的一種種植體設計,因其良好的穩(wěn)定性目前已成為臨床研究的一大方向,而針對其種植體的應力分布基礎研究少有報道,三維有限元分析是研究人工牙種植體應力分布最為常用的分析方法,本實驗應用ANSYS有限元分析軟件,對平臺轉(zhuǎn)移種植體及非平臺設計種植體骨界面進行應力分布對比分析,通過比較兩種不同表面形態(tài)種植體骨界面應力分布及應力峰值,探討平臺轉(zhuǎn)移種植體及非平臺設計種植體對骨界面應力分布的影響,為種植體的臨床設計與選擇提供參考。方法:依據(jù)成人下頜骨CT掃描結(jié)果,在ANSYS中建立下頜骨三維模型。設計平臺轉(zhuǎn)移種植體模型以及對照組非平臺轉(zhuǎn)移兩種種植體模型,建立下頜骨—種植體的幾何模型,將模型以sat格式導入Ansys Workbench中,在Ansys Workbench中可以顯示模型的整體和各個部分。材料力學參數(shù)模型中所有材料均采用各向同性的線彈性假設,將下頜骨兩側(cè)髁突頂端所有節(jié)點自由度予以剛性約束,以阻止下頜骨的位移,模型中界面兩種材料在載荷下不發(fā)生相對滑動。在種植體上表面分別施加以下兩種載荷工況的均布載荷以模擬種植體真實受力情況:(1)垂直于種植體上表面(由牙合面垂直向下)的100N均布載荷。(2)與種植體軸線成30°夾角向下,由唇頰側(cè)指向舌側(cè)的100N傾斜均布載荷。應用大型有限元分析軟件ANSYS 10.0將加載條件的參數(shù)輸入計算機,通過ANSYS10.0軟件對各組模型進行計算,得出模型加載后的的三維應力圖像以及各節(jié)點應力值,從而對結(jié)果進行分析,觀察在垂直加載和傾斜加載時應力分布及應力集中情況。結(jié)果:1垂直加載種植體應力峰值結(jié)果平臺轉(zhuǎn)移種植體:最大應力值:28.780 Mpa;最小值:0.873 Mpa;差值27.907 Mpa。非平臺轉(zhuǎn)移種植體:最大應力值:44.804 Mpa;最小值:0.885 Mpa;差值43.919 Mpa。兩者差值百分比63.54%(Fig.11)。2傾斜加載種植體應力峰值結(jié)果平臺轉(zhuǎn)移種植體:最大應力值:105.63Mpa;最小值1.000 Mpa;差值104.630Mpa。非平臺轉(zhuǎn)移種植體:最大應力值:113.570Mpa;最小值:0.391 Mpa;差值113.179Mpa。兩者差值百分比92.45%(Fig.12)。根據(jù)傾斜載荷條件的加載方向,舌側(cè)為受壓區(qū),頰側(cè)為受拉區(qū)。從傾斜載荷下的側(cè)向等效應力云圖對比中可以看出(Fig.17,18),兩個種植體在傾斜載荷條件下的等效應力水平均出現(xiàn)在皮質(zhì)骨上緣,且為舌側(cè)大于頰側(cè)。這說明在傾斜載荷條件下,應力主要集中在皮質(zhì)骨上緣?梢詫A斜載荷分解為水平方向的載荷和豎直方向的載荷,從而分析出在豎直載荷條件下,皮質(zhì)骨上緣部位的整體應力是受壓的。非平臺轉(zhuǎn)移種植體較平臺轉(zhuǎn)移種植體在轉(zhuǎn)移平臺處也就是牙頸部承受了更大的壓力。3加載后應力云圖應力分布結(jié)果由應力云圖分布結(jié)果可以看到,非平臺轉(zhuǎn)移種植體在垂直載荷和傾斜載荷條件下的最大等效應力比平臺轉(zhuǎn)移種植體大。非平臺轉(zhuǎn)移種植體相較平臺轉(zhuǎn)移種植體在傾斜載荷下的縱切等效應力云圖頸部承受了更大應力,而平臺轉(zhuǎn)移種植體則在頸部承受應力相對較小。而就應力值來說可以看到,平臺轉(zhuǎn)移種植體較非平臺轉(zhuǎn)移種植體應力更小外,提示頸部更是應力集中的區(qū)域。由對比中可以看到,非平臺轉(zhuǎn)移種植體較平臺轉(zhuǎn)移植體皆存在較大差別的應力,而此應力在種植體頸部傾斜加載下應力差別最大,而平臺轉(zhuǎn)移種植并未改變種植體應力集中區(qū)域。結(jié)論:1在不同載荷情況下,平臺轉(zhuǎn)移種植體應力峰值較非平臺轉(zhuǎn)移種植體應力峰值更小,應力分布更均勻,對骨結(jié)合的形成和骨結(jié)合的位置更有利。2平臺轉(zhuǎn)移種植并未改變種植體應力集中區(qū)域,其種植體的應力集中區(qū)域仍在植體頸部,但其減小了種植體應力峰值。
[Abstract]:Objective: oral implant technology is an ideal repair technique for patients with tooth loss at present. A satisfactory implant should have good biocompatibility and corresponding mechanical compatibility and direct contact with the bone tissue of the human body to form a bone union. The research on the implant is mainly concentrated at home and abroad. In the aspects of bone binding interface, implant biomechanics, implant material and surface technology, platform transfer implant is a new implant design in recent years. Because of its good stability, it has become a major trend in clinical research, and few reports have been reported on the stress distribution of the implant. Three The dimensional finite element analysis is the most common analysis method to study the stress distribution of artificial tooth implant. In this experiment, the stress distribution of the implant bone interface of the platform transfer implants and the non platform design is compared and analyzed by the ANSYS finite element analysis software. The stress distribution and the stress peak of two different surface forms of implant bone interface are compared. To explore the effect of platform transfer implants and non platform implants on the stress distribution of bone interface in order to provide reference for clinical design and selection of implant. Methods: the three-dimensional model of mandible was established in ANSYS based on CT scanning results of adult mandible. Two kinds of implants were designed by platform transfer implants and non platform transfer of control group. The geometric model of the mandible implant is established. The model is introduced into the Ansys Workbench by sat format, and the whole and all parts of the model can be displayed in the Ansys Workbench. All materials in the material mechanical parameter model use isotropic linear elastic hypothesis to give the stiffness of all nodes at the top of the mandible on the top of the mandible. In order to prevent the displacement of the mandible, the two materials in the model are not relatively sliding under the load. On the surface of the implant, the average load of the following two load conditions is applied to simulate the true stress of the implant. (1) the 100N load perpendicular to the surface of the implant (perpendicular to the tooth surface). (2) and the implant The angle of the axis is 30 degrees down, and the 100N of the lip and cheek points to the tongue side. The parameters of the loading condition are input to the computer by the large finite element analysis software ANSYS 10, and the models are calculated by the ANSYS10.0 software, and the three-dimensional stress images and the stress values of each node are obtained, thus the results are carried out. Analysis, the stress distribution and stress concentration of vertical loading and tilting loading were observed. Results: 1 vertical implant stress peak stress peak result platform transfer implants: maximum stress value: 28.780 Mpa; minimum value: 0.873 Mpa; difference value 27.907 Mpa. non platform transfer implants: maximum stress value: 44.804 Mpa; minimum value: 0.885 Mpa; difference value 43.919 M Pa. difference percentage 63.54% (Fig.11).2 tilted implant stress peak stress results platform transfer implants: maximum stress value: 105.63Mpa; minimum value of 1 Mpa; differential 104.630Mpa. non platform transfer implants: maximum stress value: 113.570Mpa; minimum value: 0.391 Mpa; difference value difference percentage 92.45% (Fig.12). According to the deviation of the value of 92.45% (Fig.12). The loading direction of the oblique load condition, the side of the tongue as the compression zone, the cheek side as the tension zone, can be seen in the contrast of the lateral equivalent stress cloud map under the inclined load (Fig.17,18). The equivalent stress level of the two implants under the inclined load conditions all appear on the upper edge of the cortical bone, and the tongue side is greater than the buccal side. This indicates that under the condition of the tilt load, it is necessary. The force is mainly concentrated on the upper edge of the cortical bone. The load of the load and the vertical direction can be decomposed into the horizontal direction. The stress of the upper edge of the cortical bone is analyzed under the vertical load condition. The non platform transfer implants are larger than the platform transfer implants at the transfer platform, that is, the tooth neck is greater. The stress nephogram stress distribution results can be seen from the distribution of stress cloud map after loading of pressure.3. The maximum equivalent stress of non platform transfer implants under vertical and tilt load conditions is larger than that of platform transfer implants. The non platform transfer implants are compared with the equivalent stress cloud chart of the platform transfer implants under the inclined load. The neck bears greater stress, while the platform transfer implant is less stressed in the neck, and the stress value can be seen that the platform transfer implants are less stressed than the non platform transfer implants, suggesting that the neck is more concentrated in the stress area. By contrast, the non platform transfer implants are compared to the platform transfer implant. There is a large difference in stress, and the stress has the greatest stress difference under the tilted load of the implant neck, and the platform transfer planting does not change the stress concentration area of the implant. Conclusion: 1 under different loads, the peak stress peak of the platform transfer implants is smaller than that of the non platform transfer implants, and the stress distribution is more uniform and the bone node is more uniform. The position of the combined formation and bone binding is more favorable for the.2 platform transfer planting and does not change the stress concentration area of the implant. The stress concentration area of the implant is still in the neck of the implant, but it reduces the peak stress of the implant.
【學位授予單位】:河北醫(yī)科大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:R783.6

【參考文獻】

相關期刊論文 前9條

1 朱一博;邱立新;李健慧;林野;;平臺轉(zhuǎn)換種植修復基臺折斷六例原因分析[J];中華口腔醫(yī)學雜志;2015年09期

2 栗興超;董福生;;種植體表面螺紋形態(tài)對其生物力學性能影響的研究進展[J];現(xiàn)代口腔醫(yī)學雜志;2014年05期

3 張瀟;謝占功;陳賢帥;陳建宇;;螺紋形態(tài)和螺距對種植體系統(tǒng)應力影響的三維有限元研究[J];廣東牙病防治;2012年12期

4 趙靜輝;周延民;李春艷;;種植體螺紋位置對應力分布影響的有限元研究[J];華西口腔醫(yī)學雜志;2008年06期

5 馬攀;劉洪臣;李德華;林升;史真;彭勤建;;螺紋旋轉(zhuǎn)角度和密度對種植體初期穩(wěn)定性影響的三維有限元研究[J];中華口腔醫(yī)學雜志;2007年10期

6 孔亮;劉寶林;胡開進;李德華;宋應亮;馬攀;楊勁;;螺紋種植體螺距的優(yōu)化設計和應力分析[J];華西口腔醫(yī)學雜志;2006年06期

7 孔亮;劉寶林;李德華;宋應亮;胡開進;馬攀;宋俐;楊水成;魏鋒濤;;不同螺紋形態(tài)種植體對頜骨應力影響的三維有限元比較研究[J];口腔醫(yī)學研究;2006年02期

8 汪昆;李德華;周繼祥;楊軍;史文進;張從紀;李玉龍;;螺紋形態(tài)對牙種植體初期穩(wěn)定性影響的有限元研究[J];第三軍醫(yī)大學學報;2005年23期

9 董福生,董玉英,邢汝東,石培凱,張英懷,張雄;種植體長度對骨界面應力分布影響的三維有限元分析[J];中國口腔種植學雜志;2001年03期



本文編號:2105907

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/kouq/2105907.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶2bd7a***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
久久这里只精品免费福利| 日韩欧美精品一区二区三区| 日韩在线视频精品中文字幕| 午夜视频免费观看成人| 日韩精品中文字幕亚洲| 日韩精品一区二区亚洲| 99一级特黄色性生活片| 亚洲中文字幕在线综合视频| 日韩欧美一区二区亚洲| 欧美精品在线观看国产| 日韩高清一区二区三区四区 | 日韩中文字幕人妻精品| 亚洲国产丝袜一区二区三区四| 国产又粗又猛又大爽又黄| 国产在线一区二区三区不卡| 老司机精品视频免费入口| 日韩欧美亚洲综合在线| 亚洲深夜精品福利一区| 樱井知香黑人一区二区| 午夜精品一区二区三区国产| 亚洲男人天堂成人在线视频| 亚洲av熟女一区二区三区蜜桃| 亚洲国产精品一区二区| 午夜福利激情性生活免费视频| 日本av在线不卡一区| 久久精品一区二区少妇| 欧美成人国产精品高清| 国产一级内射麻豆91| 日韩中文字幕在线不卡一区| 人妻内射精品一区二区| 国产亚洲中文日韩欧美综合网| 免费特黄欧美亚洲黄片| 午夜精品一区二区av| 深夜视频在线观看免费你懂| 欧美日韩在线第一页日韩| 精品国产亚洲区久久露脸| 日韩精品一级片免费看| 麻豆精品视频一二三区| 国产日韩欧美专区一区| 麻豆国产精品一区二区| 色婷婷激情五月天丁香|