表面不同粗化處理對(duì)純鈦種植體疲勞強(qiáng)度的影響
本文選題:純鈦種植體 + 噴砂; 參考:《河北醫(yī)科大學(xué)》2017年碩士論文
【摘要】:目的:人工種植體被廣泛應(yīng)用于修復(fù)缺失牙,很好地恢復(fù)了缺失牙患者的美觀及咀嚼功能,近年來(lái)被廣泛應(yīng)用。鈦金屬因具有良好的生物學(xué)性能和耐腐蝕性,是目前理想的人工種植體材料。種植體的表面形貌對(duì)種植體的骨結(jié)合率影響巨大。研究表明,種植體的表面粗化處理可以增大種植體與骨的接觸面積,增加兩者的機(jī)械嵌和能力,使應(yīng)力分布更為均勻,進(jìn)而有效縮短種植體與骨結(jié)合的時(shí)間,有效提高種植體的成活率。種植體表面粗化處理技術(shù)包括噴砂酸蝕法、微弧氧化法、陽(yáng)極氧化法、堿熱處理法、激光處理法等,其中又以噴砂-酸蝕法較為成熟且應(yīng)用廣泛,可使種植體獲得理想的表面形貌?谇环N植體在工程學(xué)的角度看來(lái)是一種具有特殊結(jié)構(gòu)的工程部件,其正常使用需滿足足夠的強(qiáng)度、剛度及疲勞性能。通常情況下,種植體能否承受口腔內(nèi)的咀嚼應(yīng)力是由其強(qiáng)度和剛度決定的,而種植體的使用期限長(zhǎng)短則由其疲勞性能決定。因此,成功的種植體必須具備優(yōu)良的疲勞性能。本文參照試驗(yàn)標(biāo)準(zhǔn)ISO14801:2007對(duì)比研究了未經(jīng)表面粗化處理的種植體和經(jīng)噴砂-60℃酸蝕表面處理后的種植體的表面形貌、表面相對(duì)元素含量及其疲勞強(qiáng)度,以此來(lái)分析噴砂-60℃酸蝕的表面處理方法對(duì)純鈦種植體疲勞強(qiáng)度的影響,并期望為更優(yōu)生物性能和機(jī)械性能的種植體設(shè)計(jì)提供支持依據(jù)。方法:1試件設(shè)計(jì)與制作1.1試件設(shè)計(jì):組合式純鈦基臺(tái)種植體26枚,包括純鈦內(nèi)連接式植入體,配套中央螺栓、基臺(tái)及金屬剛帽1.2試件制作:植入體直徑4.0mm,總長(zhǎng)度為14.5mm;螺紋區(qū):長(zhǎng)度11mm,頂角60°,高度0.40mm,螺距0.8mm;基臺(tái)長(zhǎng)度5mm;六方內(nèi)徑1.5mm;金屬剛帽:外徑6.5mm,內(nèi)徑4.6mm,高度6.5mm。將全部試件超聲清洗20分鐘后,常溫下干燥待用,清洗試劑分別為丙酮、75%乙醇及蒸餾水;實(shí)驗(yàn)分組:A組、B組,每組13枚試件A組(對(duì)照組):表面不做任何處理,粗糙度Ra:1.6μm;具體分為:A_(靜態(tài)):即靜態(tài)破壞載荷1枚;A_1:即初載荷A350N,共3枚;A_2:為低于A1的峰值載荷A_(325N),共3枚;A_3:為低于A1的峰值載荷A_(300N),共3枚;A_4:即最大耐受載荷A_(275N),共3枚;B組(噴TiO_2砂-60℃酸蝕組):噴砂機(jī)在噴砂氣壓0.2MPa下將粒徑為80目的TiO_2砂粒均勻噴涂7s到種植體螺紋區(qū)表面;60℃水浴下將配置好的濃度為18%的HCl與49%的H2SO4混合酸酸蝕40min;具體分為:B_(靜態(tài)):即靜態(tài)破壞載荷1枚;B_1:即初載荷B_(450N),共3枚;B_2:為低于B1的峰值載荷B_(425N),共3枚;B_3:為低于B1的峰值載荷B_(400N),共3枚;B_4:即最大耐受載荷B375N,共3枚;3掃描電鏡(SEM)觀察及表面相對(duì)元素含量分析掃描電鏡(SEM)觀察A、B兩組純鈦種植體的表面形貌,并用X射線能譜分析儀(EDX)分析其表面相對(duì)元素含量。4種植體疲勞強(qiáng)度試驗(yàn)兩組試件用樹(shù)脂夾具固定,夾具頂端距種植體螺紋頂端3mm,保持試件與萬(wàn)能試驗(yàn)機(jī)的垂直加載長(zhǎng)軸呈30°,加載中心為種植體上的金屬帽,其位于種植體中心長(zhǎng)軸上;在25℃的室內(nèi)恒溫下對(duì)種植體進(jìn)行側(cè)向加載,載荷為單向,呈正弦曲線變化,速率為1mm/min,頻率為15Hz,循環(huán)次數(shù)為5×10~6;初載荷(A1B1)為相同試驗(yàn)條件下測(cè)得的靜態(tài)破壞載荷(A靜態(tài)B靜態(tài))的80%,隨后逐漸減小載荷,并記錄不同載荷下的試驗(yàn)數(shù)據(jù),直至載荷達(dá)到下限值(最大耐受載荷),共進(jìn)行4種載荷的試驗(yàn),每種載荷下測(cè)試3個(gè)試件,其中最大耐受載荷下,連續(xù)3個(gè)試件完成5×10~6次循環(huán)未發(fā)生變形或破壞。每次試驗(yàn)完成后,均應(yīng)肉眼觀察金屬帽與加載裝置表面,確認(rèn)其是否發(fā)生永久變形,如有變形,則需更換變形部位并重新試驗(yàn)。記錄試驗(yàn)數(shù)據(jù),并畫(huà)出載荷循環(huán)圖。2實(shí)驗(yàn)分組及種植體表面粗化處理結(jié)果:1掃描電鏡觀察種植體表面形貌1.1低倍鏡下(×35)A組:表面光滑較平整;B組:表面較粗糙,螺紋的溝部及斜面均勻無(wú)雜質(zhì),螺紋嵴部可見(jiàn)點(diǎn)狀或條索狀的凹陷或淺溝。1.2高倍鏡下(×2000、×5000、×8000)A組:表面可見(jiàn)方向一致的淺溝紋狀結(jié)構(gòu),偶見(jiàn)點(diǎn)狀凹陷;B組:表面可見(jiàn)大量大小不一的窩洞,直徑范圍3~32μm,一級(jí)窩洞內(nèi)還可以見(jiàn)到不規(guī)則形狀的二級(jí)窩洞,直徑2~6μm,邊緣較圓鈍,層次較清晰。2表面能譜元素分析A、B兩組種植體表面Ti元素的含量均大于99.50%。3兩組純鈦種植體疲勞試驗(yàn)結(jié)果(見(jiàn)附表12,13,及附圖17,18)A組:最大耐受載荷A_4,即疲勞強(qiáng)度,為275N,此載荷下3枚試件均完成5×10~6次循環(huán)負(fù)載未發(fā)生變形或破壞;靜態(tài)破壞載荷為439N;初載荷A_1:為靜態(tài)破壞載荷的80%,350N;A_2:325N;A_3:300N;B組:最大耐受載荷B_4,即疲勞強(qiáng)度,為375N,此載荷下3枚試件均完成5×10~6次循環(huán)負(fù)載未發(fā)生變形或破壞;靜態(tài)破壞載荷為573N;初載荷B_1:為靜態(tài)破壞載荷的80%,450N;B_2:425N;B_3:400N;結(jié)論:1經(jīng)噴TiO_2砂-60℃酸洗處理的純鈦種植體與表面未經(jīng)粗化處理的種植體的疲勞強(qiáng)度均在口腔咬合力的范圍內(nèi),均滿足臨床應(yīng)用要求。2經(jīng)噴TiO_2砂-60℃酸洗處理的純鈦種植體的疲勞強(qiáng)度優(yōu)于未經(jīng)粗化處理的純鈦種植體。3科學(xué)的表面噴TiO_2砂-酸洗處理的設(shè)計(jì)不僅使純鈦種植體獲得理想的表面形貌,提高了種植體的骨結(jié)合能力,而且能提高純鈦種植體的疲勞強(qiáng)度。
[Abstract]:Objective: artificial implant is widely used in the restoration of missing teeth, and it has been widely used in recent years to restore the beauty and masticatory function of the missing teeth. Titanium metal is the ideal artificial implant material because of its good biological properties and corrosion resistance. The surface morphology of the implant has a great influence on the bone binding rate of the implant. The study shows that the surface coarsening of the implant can increase the contact area of the implant and bone, increase the mechanical inlay and ability of the two, make the stress distribution more uniform, and effectively shorten the time of the combination of the implant with the bone, and effectively improve the survival rate of the implants. The surface coarsening of the implant includes sand erosion and micro arc oxygen. The method, anodic oxidation, alkali heat treatment, laser treatment and so on, which are more mature and widely used with sand blasting and acid etching, can make the implant obtain ideal surface morphology. The oral implant is an engineering component with special structure at the angle of engineering. Its normal use needs sufficient strength, stiffness and fatigue. Performance. Generally, whether the implant is able to bear the masticatory stress in the mouth is determined by its strength and stiffness, and the length of the implant is determined by its fatigue performance. Therefore, the successful implants must have excellent fatigue properties. In this paper, a comparison of the test standard ISO14801:2007 has been made to study the uncoarsened treatment. The surface morphology, the surface relative element content and the fatigue strength of the implants and the surface relative elements of the implants treated with -60 C etching surface were analyzed in order to analyze the effect of the surface treatment method on the fatigue strength of pure titanium implants at -60 C etching, and to provide support for the design of better biological and mechanical implants. Method: 1 design and production of 1.1 specimen design: a combination of 26 pure titanium base implants, including pure titanium implant, supporting central bolt, base platform and metal cap 1.2 test parts: the diameter of the implant is 4.0mm, the total length is 14.5mm; the length 11mm, the top angle 60 degrees, the height 0.40mm, the pitch 0.8mm; the base length 5mm; the six square internal diameter 1.5 Mm; metal rigid cap: outer diameter 6.5mm, internal diameter 4.6mm, high 6.5mm. after ultrasonic cleaning 20 minutes after ultrasonic cleaning, dry at normal temperature, cleaning reagents are acetone, 75% ethanol and distilled water respectively. Experimental groups: A group, B group, each group of 13 specimens A group (control group): the surface does not do any treatment, roughness Ra:1.6 u m; A_ (static): static breaking: static breaking: static breaking: that is static break: that is static breaking The bad load is 1; A_1: is the initial load A350N, a total of 3; A_2: is lower than A1's peak load A_ (325N), a total of 3; A_3: is lower than A1's peak load A_ (300N), a total of 3; A_4: is the maximum tolerance load A_, a total of 3. The surface of the implant threaded area; a mixed acid etching 40min of 18% HCl and 49% H2SO4 under 60 centigrade water bath; B_ (static): static damage load 1; B_1: is B_ (450N), a total of 3; B_2: is a peak load of lower than B1 B_ (425N), a total of 3. Load B375N, total 3, 3 scanning electron microscopy (SEM) observation and surface relative element content analysis scanning electron microscope (SEM) observation of the surface morphology of A, B two groups of pure titanium implants, and X ray energy spectrum analyzer (EDX) analysis of the surface relative element content.4 implant fatigue strength test, test two groups of specimens with resin fixture fixed, fixture tip from implant snail At the top of the grain 3mm, the vertical loading axis of the test piece and the universal testing machine is 30 degrees, and the loading center is the metal cap on the implant. It is located on the long axis of the implant center. At the constant temperature of 25 degrees, the load is laterally loaded, the load is one-way, the rate is 1mm/min, the frequency is 15Hz, and the cycle number is 5 * 10~6; The load (A1B1) is 80% of the static failure load (static static B static of A) measured under the same test conditions. Then the load is gradually reduced and the test data under different loads are recorded until the load reaches the lower limit (maximum tolerance load). A total of 4 load tests are carried out, and 3 specimens are tested under each load, of which the maximum tolerance load is 3 consecutive. After completion of the 5 x 10~6 cycle, the specimen should be observed to the surface of the metal cap and loading device by the naked eye to confirm whether it has permanent deformation. If there is a deformation, the deformation site should be replaced and retested. The test data are recorded, and the load cycle diagram.2 experiment group and the surface coarsening treatment of the implant are drawn. Results: 1 the surface morphology of implant surface was observed by scanning electron microscope (1.1) A group (x 35): the surface was smooth and smooth. Group B: the surface was relatively rough, the groove part and the oblique surface of the thread were uniform without impurities, and the thread crest could be found in the A group under the.1.2 high magnification (x 2000, X 5000, X 8000) in the crest or shallow groove (x 2000, X 5000, X 8000). In group B, there are a large number of holes in the surface of B, the diameter of the hole is 3~32 mu m, the irregular shape of the hole can be seen in the first class cave, the diameter 2~6 mu m, the edge more circular and blunt, the clear.2 surface energy spectrum element analysis A, the content of the Ti element on the surface of the B two implants is larger than that of the 99.50%.3 two group of pure titanium implants. The results of the test (see table 12,13, and appendix 17,18) A: the maximum tolerance load A_4, that is, the fatigue strength, is 275N, and the 3 specimens under this load have finished 5 x 10~6 sub cycle load without deformation or damage; the static failure load is 439N; the initial load A_1: is 80%, 350N; A_2:325N; A_3:300N; B group: maximum tolerance load, that is, fatigue. The strength of the strain was 375N, and the 3 specimens under this load had not been deformed or destroyed by the 5 x 10~6 cyclic load; the static failure load was 573N; the initial load B_1: was 80% of the static failure load, 450N; B_2:425N; B_3:400N; conclusion: 1 the fatigue strength of the pure titanium implants treated with the pure titanium implant and the untreated implants treated by the -60 centigrade acid washing of TiO_2 sand. In the range of oral bite force, the fatigue strength of pure titanium implants treated with.2 TiO_2 sand -60 centigrade acid washing is better than that of pure titanium implants without coarsening. The scientific surface spray TiO_2 sand and acid washing treatment of.3 not not only makes the pure titanium implants get the rational surface morphology, but also improves the bone knot of the implant. Combining ability, and can improve the fatigue strength of pure titanium implant.
【學(xué)位授予單位】:河北醫(yī)科大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:R783.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前4條
1 曲露露;李美華;羅云綱;;純鈦種植體表面處理技術(shù)促進(jìn)骨整合研究進(jìn)展[J];中國(guó)老年學(xué)雜志;2015年12期
2 栗興超;董福生;;鈦種植體表面活性化處理的研究進(jìn)展[J];現(xiàn)代口腔醫(yī)學(xué)雜志;2014年06期
3 劉揚(yáng)林;;摻硅二氧化鈦復(fù)合薄膜超親水性研究[J];企業(yè)技術(shù)開(kāi)發(fā);2009年07期
4 馬楚凡,李冬梅,李賀軍,蔣百靈,李佐臣,王立新;微弧氧化和電泳沉積復(fù)合制備羥基磷灰石/TiO_2復(fù)合涂層及其生物學(xué)特性[J];硅酸鹽學(xué)報(bào);2005年03期
相關(guān)博士學(xué)位論文 前1條
1 李迎;表面處理工藝對(duì)純鈦種植體生物學(xué)性能影響的對(duì)比研究[D];山東大學(xué);2014年
相關(guān)碩士學(xué)位論文 前4條
1 劉瀟;純鈦表面不同處理對(duì)人牙齦成纖維細(xì)胞增殖的影響[D];河北醫(yī)科大學(xué);2011年
2 么遠(yuǎn);純鈦表面不同處理對(duì)成骨細(xì)胞生長(zhǎng)的影響[D];河北醫(yī)科大學(xué);2011年
3 張揚(yáng);純鈦表面不同處理對(duì)骨髓間充質(zhì)干細(xì)胞礦化的影響[D];河北醫(yī)科大學(xué);2011年
4 孫士軍;純鈦種植體粗化表面的構(gòu)建及形貌分析[D];河北醫(yī)科大學(xué);2008年
,本文編號(hào):2092796
本文鏈接:http://sikaile.net/yixuelunwen/kouq/2092796.html