髁突在BSSRO手術兩種裂開方式不同前移量下位置變化的觀測研究
發(fā)布時間:2018-06-03 20:16
本文選題:雙側下頜升支矢狀劈開截骨術(BSSRO) + 有限元; 參考:《天津醫(yī)科大學》2016年碩士論文
【摘要】:目的:1.運用多種軟件聯(lián)合建立3D仿真模型,并模擬下頜升支矢狀劈開截骨(BSSRO)手術內(nèi)固定后的模型。為用有限元法分析BSSRO術后不同組織結構的生物力學提供參考。2.從生物力學角度出發(fā),觀察在BSSRO手術兩種裂開方式、不同前移量情況下,髁狀突的位移變化趨勢。更深入了解BSSRO手術后髁突位置的變化情況。3.在有限元模型上,比較分析髁狀突在BSSRO手術兩種裂開方式、同一前移量情況下的位移變化,以及同一裂開方式、不同前移量情況下的位移變化。為改進臨床手術,避免髁突移位提供理論基礎。研究對象及方法研究對象:下頜骨干骨模型,以下頜骨干骨模型為基礎建立的包括髁突軟骨、關節(jié)盤、關節(jié)窩的有限元(FE)模型。研究方法及步驟:1.選取并建立模型。(1)選取解剖結構完整,牙列完整的下頜骨干骨標本,作為實體模型。(2)采用CBCT掃描技術獲取下頜骨連續(xù)斷層的DICOM格式數(shù)據(jù),通過數(shù)字影像轉換,與三維有限元方法相結合直接建模。建立的包括髁突軟骨、關節(jié)盤、關節(jié)窩在內(nèi)的下頜骨3D模型。2.模擬BSSRO手術:在下頜與關節(jié)復合體三維有限元模型上,模擬BSSRO手術,使下頜骨分成兩個近心骨段與一個遠心骨段,并用鈦板鈦釘固定。骨裂方式分別為下頜后緣內(nèi)外骨板間裂開(方式1)和下頜舌骨溝裂開(方式2)兩種方式。3.截骨段移位方式模擬:結合臨床,在下頜與關節(jié)復合體三維有限元模型上,增加邊界約束及咀嚼肌載荷,模擬遠心骨段前移矯治下頜后縮畸形手術方式。4.生物力學分析比較:(1)在BSSRO三維有限元模型上,記錄分析髁狀突在同一種裂開方式、不同前移量工況下的位移趨勢及位移量。(2)在bssro三維有限元模型上,記錄分析髁狀突在同一前移量、不同裂開方式工況下的位移趨勢及位移量。結果:1.建立包含tmj的下頜骨三維有限元模型,并模擬bssro前移手術,獲得具有幾何相似性及生物相似性的三維模型,為后續(xù)研究打下基礎。2.獲得髁狀突不同部位在不同裂開方式、不同前移量下的位移。3.髁突在以方式1裂開,前移量分別為3mm和8mm時位移量比較,髁突內(nèi)側位移變化明顯(p0.05)。結論:1.無論裂開方式及前移量如何,髁突的位移趨勢一樣,即:髁突逆時針旋轉,髁突橫軸延長線夾角(ica)減小。2.當以方式1裂開時,髁突內(nèi)側的位移變化與前移量有統(tǒng)計學差異,前移量越大,髁突內(nèi)側的位移變化越大(p0.05)。3.當以方式2裂開時,髁突位移變化與前移量無統(tǒng)計學差異(p0.05)。
[Abstract]:Purpose 1. A 3D simulation model was established by using a variety of software, and the model after internal fixation of mandibular ramus sagittal split osteotomy (BSSRO) was simulated. It provides a reference for the analysis of biomechanics of different tissue structures after BSSRO by finite element method. From the biomechanical point of view, the trend of condyle displacement was observed under the condition of two kinds of split modes and different forward displacement in BSSRO operation. To further understand the condylar position after BSSRO operation. In the finite element model, the displacement changes of condyle under the same forward displacement and the same split mode and different forward displacement are compared and analyzed. To improve the clinical operation, to avoid condylar displacement to provide a theoretical basis. Objects and methods: the mandibular diaphysis model, a finite element FEE model including condylar cartilage, articular disc and articular fossa, was established based on the mandibular diaphysis model. Research methods and steps: 1. Selecting and establishing model. (1) selecting the bone specimen of mandibular diaphysis with complete anatomical structure and complete dentition as entity model. (2) using CBCT scanning technique to obtain the DICOM format data of mandibular continuous section, and converting it by digital image. Direct modeling is combined with 3D finite element method. A 3D model of mandible including condylar cartilage, articular disc and articular fossa was established. Simulated BSSRO operation: in the three-dimensional finite element model of mandibular and articular complex, BSSRO operation was simulated. The mandible was divided into two proximal bone segments and one distal bone segment, and was fixed with titanium plate and titanium nail. The fracture patterns of mandibular posterior margin were interlaminar fissure (mode 1) and mandibular hyoid fissure (mode 2). Osteotomy transposition simulation: combined with clinical, in the mandibular and articular complex three-dimensional finite element model, added boundary constraints and masticatory muscle load, simulated distal bone segment forward correction of mandibular retraction deformity operation method .4. Comparison of biomechanical analysis on BSSRO 3D finite element model, the displacement trend and displacement of condyle under the same split mode and different forward displacement conditions were recorded and analyzed on the bssro 3D finite element model. The displacement trend and displacement of condyle under the same forward displacement and different split modes were recorded and analyzed. The result is 1: 1. The three-dimensional finite element model of mandible including tmj was established, and bssro forward operation was simulated. The 3D model with geometric similarity and biological similarity was obtained, which laid a foundation for further research. The displacement. 3. 3 of condyle was obtained under different dehiscence mode and different forward displacement of condyle. When the condyle was split in mode 1 and the forward displacement was 3mm and 8mm respectively, the medial displacement of the condyle changed significantly (p0.05). Conclusion 1. Regardless of the way of opening and the amount of forward displacement, the trend of condyle displacement is the same, that is, the condyle rotates counterclockwise, and the angle between the lengthening line of the transverse axis of condyle decreases by .2. When split in mode 1, there was statistical difference between the displacement of the medial condylar process and the amount of the forward displacement. The greater the amount of forward displacement, the greater the displacement change of the medial condylar process was (p0.05 路3). There was no significant difference between the displacement of condyle and the amount of forward displacement when mode 2 was split.
【學位授予單位】:天津醫(yī)科大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:R782
【相似文獻】
相關期刊論文 前10條
1 方一鳴,谷志遠,陳偉建,王靖哠,柴田考典,張林;髁突矢狀骨折的影像學特征及臨床分析[J];中華口腔醫(yī)學雜志;2001年04期
2 李波;髁突位置對顳下頜關節(jié)內(nèi)紊亂的診斷意義[J];國外醫(yī)學.口腔醫(yī)學分冊;2001年02期
3 黃靖,沈軍;髁突的測量分析與骨折發(fā)生的關系[J];口腔材料器械雜志;2004年03期
4 陳宇翔;龍星;;放射性核素骨掃描技術在髁突肥大的診斷和治療中的應用[J];國際口腔醫(yī)學雜志;2009年01期
5 賈佐鋼;;髁突囊內(nèi)骨折常規(guī)術后加用鉭墊的療效觀察[J];航空航天醫(yī)學雜志;2012年09期
6 林燕;程U,
本文編號:1974040
本文鏈接:http://sikaile.net/yixuelunwen/kouq/1974040.html
最近更新
教材專著