天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 醫(yī)學(xué)論文 > 口腔論文 >

全瓷界面功能梯度層優(yōu)化設(shè)計(jì)、構(gòu)建與性能研究

發(fā)布時(shí)間:2018-05-24 22:15

  本文選題:全瓷 + 功能梯度層 ; 參考:《上海交通大學(xué)》2015年碩士論文


【摘要】:目的:通過建立雙層瓷/仿生功能梯度層/粘結(jié)劑/牙本質(zhì)基底的平面及三維曲面有限元模型。模擬加載,對模型進(jìn)行三維有限元力學(xué)分析,探明全瓷修復(fù)體界面仿生功能梯度層優(yōu)化設(shè)計(jì)辦案。同時(shí),應(yīng)用玻璃滲透技術(shù)制作不同預(yù)燒結(jié)溫度的包含仿生功能梯度界面的氧化鋯陶瓷試件,研究其滲透界面的微觀結(jié)構(gòu)與力學(xué)行為的變化,探討仿生功能梯度界面提高全瓷修復(fù)體性能的可靠性和可行性,為進(jìn)一步臨床應(yīng)用提供實(shí)驗(yàn)依據(jù)。方法:1.建立雙層瓷/仿生功能梯度層/粘結(jié)劑/牙本質(zhì)基底的三維平面有限元模型(核瓷材料設(shè)定為氧化鋯),不包含仿生功能梯度層的模型,即雙層瓷/粘結(jié)劑/牙本質(zhì)基底的三維平面有限元模型作為對照組,對模型進(jìn)行垂直加載,并采用ANSYS軟件中的一階方法對仿生功能梯度層彈性模量的變化進(jìn)行優(yōu)化計(jì)算分析。2.選取完整無磨損的離體成人右上頜第一磨牙作為標(biāo)本,經(jīng)Micro-CT掃描獲取圖像,經(jīng)Mimics10.0軟件進(jìn)行三維重建。建立雙層瓷/仿生功能梯度層/粘結(jié)劑/牙本質(zhì)基底的三維曲面有限元模型(核瓷材料設(shè)定為氧化鋯)。不包含功能梯度層的模型,即雙層瓷/粘結(jié)劑/牙本質(zhì)基底的三維曲面有限元模型作為對照組。對模型施加垂直和斜向加載,采用ANSYS軟件中的一階方法對仿生功能梯度層彈性模量的變化進(jìn)行優(yōu)化計(jì)算分析。3.制備直徑為12mm,厚0.5mm氧化鋯圓盤狀試件,將試件按照預(yù)燒結(jié)溫度分為900℃、1000℃、1100℃三細(xì),調(diào)配玻璃漿料滲透于試件表而,再進(jìn)行終燒結(jié)電鏡下檢測試件橫截面,觀察梯度層的微觀結(jié)構(gòu),并對試件作納米壓痕試驗(yàn)、最大斷裂壓力測試及循環(huán)疲勞實(shí)驗(yàn),檢測仿生功能梯度氧化鋯試件的彈性模量、抗壓強(qiáng)度、抗疲勞強(qiáng)度并進(jìn)行表面裂紋的初步分析。結(jié)果:1.建立了雙層瓷/功能梯度層/粘結(jié)劑/牙本質(zhì)基底的三維平面有限元模型。垂直加載情況下,功能梯度層中最大主應(yīng)力為23.0186MPa。應(yīng)力分布均勻且平穩(wěn)過渡;而對照組,在核瓷底部出現(xiàn)了應(yīng)力集中,最大主應(yīng)力值為100.25MPa,并且得到了實(shí)驗(yàn)組功能梯度層內(nèi)彈性模量梯度變化的優(yōu)化曲線。2.建立了雙層瓷/功能梯度層/粘結(jié)劑/牙本質(zhì)基底的三維曲面有限元模型。實(shí)驗(yàn)組在垂直加載時(shí)功能梯度層中最大主應(yīng)力為76.70MPa,斜向加載時(shí)功能梯度層中最大主應(yīng)力為31.80MPa,應(yīng)力分布均勻;而對照組,在核瓷底部出現(xiàn)了應(yīng)力集中,垂直加載和斜向加載時(shí)最大主應(yīng)力值分別為121.90MPa和63.82MPa,實(shí)驗(yàn)組的最大主應(yīng)力在垂直加載和斜向加載時(shí)分別下降了37.07%和50.18%。本實(shí)驗(yàn)還分別得到了實(shí)驗(yàn)組功能梯度層內(nèi)彈性模量梯度變化的優(yōu)化曲線。3.通過玻璃滲透法制備不同預(yù)燒結(jié)溫度(900℃,1000℃,1100℃)的功能梯度氧化鋯陶瓷試件。電鏡顯示氧化鋯試件橫截面的背散射電子圖像(BSE)并表明形成了約150-200μm的梯度結(jié)構(gòu)層。納米壓痕實(shí)驗(yàn)結(jié)果顯示功能梯度層從表面向內(nèi)部彈性模量逐漸增高,在氧化鋯表層形成了一個(gè)有效的彈性模量梯度。對不同預(yù)燒結(jié)溫度的試件進(jìn)行最大負(fù)載力學(xué)實(shí)驗(yàn)結(jié)果顯示仿生功能梯度界面的存在提高了試件的抗壓強(qiáng)度;而在循環(huán)疲勞實(shí)驗(yàn)的結(jié)果提示仿生功能梯度氧化鋯陶瓷較對照組相比可承受更多次的循環(huán)加載,實(shí)驗(yàn)后對試件表面觀察也顯示仿生功能梯度氧化鋯形成的裂紋較少且規(guī)則。結(jié)論:1.仿生界面功能梯度層能有效降低全瓷修復(fù)體核瓷底部的應(yīng)力集中,其內(nèi)部彈性模量的梯度變化存在優(yōu)化方式。2.利用玻璃滲透技術(shù)可以在氧化鋯核瓷內(nèi)形成仿生功能梯度結(jié)構(gòu),仿生功能梯度結(jié)構(gòu)可顯著提高氧化鋯陶瓷的抗壓及增韌能力,且玻璃滲透過程中預(yù)燒結(jié)溫度對陶瓷力學(xué)性能的提高程度有一定影響。
[Abstract]:Objective: by establishing a plane and three-dimensional surface finite element model of double porcelain / biomimetic functionally graded layer / binder / dentine base, simulated loading, three-dimensional finite element mechanics analysis of the model, and the optimization design of the bionic functionally graded layer of all porcelain prosthesis interface. At the same time, different pre sintering temperatures were made by glass infiltration technology. A zirconia ceramic specimen containing a biomimetic functionally gradient interface was used to study the microstructure and mechanical behavior of the interface, and to explore the reliability and feasibility of improving the performance of all ceramic restorations by the biomimetic functionally gradient interface, and to provide experimental basis for further clinical application. Method: 1. the double layer porcelain / biomimetic functionally gradient layer was established. The three-dimensional plane finite element model of the adhesive / dentine substrate (the nuclear porcelain is set as zirconia), and does not contain the model of the biomimetic functionally gradient layer, that is the three-dimensional plane finite element model of the double porcelain / adhesive / dentine base as the control group. The model is loaded vertically, and the bionic function is adopted by the first order method in the ANSYS software. The change of the elastic modulus of the gradient layer is optimized and analyzed by.2., the intact right maxillary first molar of the adult adult is selected as the specimen, the image is obtained by Micro-CT scanning, and the three-dimensional reconstruction is carried out by the Mimics10.0 software. The three-dimensional surface finite element model of the double porcelain / bionic functionally gradient layer / binder / dentine base is established. The ceramic material is set as zirconium oxide. The model which does not contain the functionally gradient layer, that is the three-dimensional surface finite element model of the double porcelain / adhesive / dentine base is used as the control group. The vertical and oblique loading of the model are applied to the model. The first order method of the ANSYS software is used to optimize the.3. system for the change of the elastic modulus of the biomimetic functionally graded layer. A disc specimen with a diameter of 12mm and thick 0.5mm zirconia was prepared. The specimen was divided into 900 degrees centigrade, 1000 C, 1100 C three fines at the pre sintering temperature, and the glass slurry was mixed with the specimen table, then the cross section of the specimen was detected under the final sintering electron microscope, and the microstructure of the gradient layer was observed, and the nano indentation test, the maximum fracture pressure test and the evidence-based process were made to the specimen. The elastic modulus, the compressive strength, the fatigue strength and the surface crack of the biomimetic functionally graded zirconia specimen were measured by the cyclic fatigue test. Results: 1. the three-dimensional plane finite element model of the double ceramic / functional gradient layer / binder / dentine base was established. The maximum principal stress in the functionally graded layer under the vertical loading condition. The stress distribution of 23.0186MPa. is uniform and smooth, while in the control group, the stress concentration in the bottom of the nuclear porcelain has a stress concentration, the maximum principal stress is 100.25MPa, and the optimization curve of the elastic modulus gradient in the functional gradient layer of the experimental group is obtained. The three-dimensional surface of the double ceramic / functional gradient layer / binder / dentine base is established by.2.. The maximum principal stress in the functional gradient layer of the experimental group is 76.70MPa. The maximum principal stress in the functionally graded layer is 31.80MPa and the stress distribution is uniform when the vertical loading is loaded vertically. While the control group has a stress concentration at the bottom of the nuclear porcelain, the maximum principal stress values of the vertical loading and the oblique loading are 121.90MPa and 63.82MPa, respectively. The maximum principal stress of the test group decreased by 37.07% and 50.18%. respectively at the vertical loading and oblique loading. The optimized curve.3. of the elastic modulus gradient in the functional gradient layer of the experimental group was also obtained respectively. The functional gradient zirconium oxide ceramic specimens with different pre sintering temperatures (900, 1000, 1100 C) were prepared by the glass infiltration method. The back scattering electron image (BSE) showing the cross section of the zirconia specimen shows that the gradient structure of about 150-200 m is formed. The nano indentation test results show that the functionally gradient layer gradually increases from the surface to the internal modulus of elasticity and forms an effective elastic modulus gradient on the surface of zirconia. The results of the maximum load mechanics experiment show that the existence of the biomimetic functionally graded interface improves the compressive strength of the specimen, and the results of cyclic fatigue test suggest that the biomimetic functionally graded zirconia ceramics can bear more cyclic loading than the control group, and the surface observation of the specimens also shows the formation of the biomimetic functionally graded zirconia formation after the experiment. There are few cracks and rules. Conclusion: the 1. biomimetic interface functionally graded layer can effectively reduce the stress concentration in the bottom of the whole porcelain prosthesis. The gradient change of the internal elastic modulus of the.2. can be optimized by the glass infiltration technology. The biomimetic functionally gradient structure can be formed in the zirconia nuclear porcelain and the biomimetic functionally gradient structure can be significantly improved. The compressive and toughening properties of zirconia ceramics, and the pre sintering temperature during glass infiltration have certain effects on the mechanical properties of zirconia ceramics.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:R783.1

【相似文獻(xiàn)】

中國期刊全文數(shù)據(jù)庫 前1條

1 崔暢;孫健;孫芳;;三維曲面全瓷修復(fù)體界面仿生功能梯度層優(yōu)化設(shè)計(jì)[J];口腔頜面修復(fù)學(xué)雜志;2013年05期

中國重要會(huì)議論文全文數(shù)據(jù)庫 前2條

1 陳培見;陳少華;;有限梯度層滑動(dòng)熱接觸的研究[A];北京力學(xué)會(huì)第18屆學(xué)術(shù)年會(huì)論文集[C];2012年

2 王揚(yáng)衛(wèi);王富恥;李俊濤;于曉東;;無壓浸滲制備梯度Si_3N_4/Al復(fù)合材料[A];第五屆中國功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集Ⅱ[C];2004年

中國博士學(xué)位論文全文數(shù)據(jù)庫 前5條

1 吳振華;梯度異質(zhì)材料實(shí)體優(yōu)化設(shè)計(jì)及成型規(guī)劃方法研究[D];合肥工業(yè)大學(xué);2012年

2 毛健;電磁波屏蔽材料的電磁特性研究及低反射、高吸收梯度功能設(shè)計(jì)[D];四川大學(xué);1999年

3 許富民;梯度分布的SiC顆粒增強(qiáng)鋁基復(fù)合材料的制備,,組織和力學(xué)行為[D];大連理工大學(xué);2003年

4 羊建高;梯度結(jié)構(gòu)硬質(zhì)合金的制備原理及梯度形成機(jī)理研究[D];中南大學(xué);2004年

5 李長虹;梯度銅石墨自潤滑材料及摩擦性能研究[D];北京交通大學(xué);2006年

中國碩士學(xué)位論文全文數(shù)據(jù)庫 前10條

1 張留軍;控制冷卻技術(shù)對低合金鋼梯度組織和性能的影響[D];東北大學(xué);2014年

2 張宗梅;生土基梯度墻體材料力學(xué)性能及數(shù)值模擬研究[D];中原工學(xué)院;2016年

3 韓國凱;防隔熱一體化熱防護(hù)結(jié)構(gòu)的梯度層設(shè)計(jì)與整體優(yōu)化[D];哈爾濱工業(yè)大學(xué);2016年

4 崔暢;全瓷界面功能梯度層優(yōu)化設(shè)計(jì)、構(gòu)建與性能研究[D];上海交通大學(xué);2015年

5 李春月;SiC_p/Cu梯度復(fù)合材料的制備及性能研究[D];陜西理工學(xué)院;2010年

6 陳聰聰;顆粒增強(qiáng)鋁基梯度復(fù)合材料摩擦磨損性能的研究[D];湖南大學(xué);2011年

7 劉雁;離心鑄造法制備Mg_2Si(Si)/Al梯度復(fù)合材料及其耐磨性的研究[D];吉林大學(xué);2009年

8 張金龍;梯度多孔Ti-Mg基生物復(fù)合材料的制備與性能研究[D];南京航空航天大學(xué);2011年

9 陳蕊;ZrO_2/Ni梯度復(fù)合材料的制備及其抗熱震性能研究[D];哈爾濱理工大學(xué);2012年

10 尚麗娟;有機(jī)硅聚合物-聚甲基丙烯酸甲酯梯度材料制備研究[D];武漢理工大學(xué);2005年



本文編號:1930805

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/kouq/1930805.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ccb15***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com