天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 醫(yī)學(xué)論文 > 口腔論文 >

微型種植體單一載荷與復(fù)合載荷的生物力學(xué)效應(yīng)及規(guī)律

發(fā)布時(shí)間:2018-05-17 01:29

  本文選題:微種植體 + 單一載荷; 參考:《河北醫(yī)科大學(xué)》2015年碩士論文


【摘要】:目的:臨床正畸治療過程中,支抗的控制常常是影響治療效果的關(guān)鍵因素,若支抗控制不好甚至可以導(dǎo)致治療的失敗。隨著原有的支抗控制裝置已不能滿足臨床需要,近年來微型種植體支抗技術(shù)逐漸應(yīng)用于臨床正畸治療,并且由于其尺寸小、植入位置靈活、手術(shù)創(chuàng)傷小等原因受到廣泛歡迎,極大地拓展了正畸治療的范圍。但微型種植體脫落情況時(shí)有發(fā)生,據(jù)報(bào)道成功率89%,影響了支抗種植體在臨床更為廣泛的開展。影響種植體穩(wěn)定性的因素包括生物學(xué)穩(wěn)定性和生物力學(xué)穩(wěn)定性。材料學(xué)的發(fā)展極大地提高了種植體的生物學(xué)穩(wěn)定性,因此種植體的生物力學(xué)穩(wěn)定性逐漸受到重視。學(xué)者們對(duì)修復(fù)種植體的力學(xué)影響做了大量研究,但微型種植體明顯不同于修復(fù)種植體,種植體植入位置及對(duì)其載荷的方式都有很大的差別。一些學(xué)者對(duì)微型種植體植入角度及載荷方向做了研究,發(fā)現(xiàn)二者均明顯影響了種植體-骨界面的應(yīng)力分布。但在臨床實(shí)際操作中,對(duì)支抗種植體的載荷方式更加復(fù)雜多變,可能為單一載荷,也可能為復(fù)合載荷,并且會(huì)根據(jù)不同的正畸治療目的而改變載荷方向。目前,有關(guān)不同載荷方式對(duì)種植體-骨界面應(yīng)力分布的作用效果和規(guī)律尚不明確,未見有文獻(xiàn)報(bào)道。三維有限元法是分析口腔種植體生物力學(xué)的重要方法和手段,已廣泛應(yīng)用于口腔領(lǐng)域。此方法通過建立精確的牙頜系統(tǒng)模型,可真實(shí)的模擬不同載荷下種植體及其周圍組織的位移及應(yīng)力的變化,由于受其他因素影響較小,是目前研究微種植體比較可靠的一種方法。本實(shí)驗(yàn)通過三維有限元分析法,建立了兩種角度植入微種植體的骨塊模型,模擬臨床不同植入角度時(shí)對(duì)種植體施加單一或復(fù)合載荷,并觀察不同載荷方式下種植體周圍組織的應(yīng)力分布和位移變化,探討種植體不同植入角度、不同載荷方式種植體-骨界面應(yīng)力分布的規(guī)律,為臨床應(yīng)用提供理論依據(jù),以期提高微種植體的穩(wěn)定性。方法:1實(shí)驗(yàn)設(shè)備計(jì)算機(jī):筆記本工作站,Dell precision (Intel(R) Core(TM) i7-4800MQ CPU@2.70GHz:32G內(nèi)存,win7,64位操作系統(tǒng))軟件包:Mimics, Catia V5,Hyperworks 12.0, Abaqus6.13, excel,截圖工具2微種植體—頜骨模型2.1建立模型臨床為了使作為支抗的微種植體可以植入頜骨的任意部位,其直徑和長度的范圍是受到限制的。本文模擬了一個(gè)直徑為1.6mm的微種植體,螺紋高度0.3mm、螺紋間距0.5mm、螺紋頂角600,材料為純鈦。而種植體長度一般由植入部位的解剖形態(tài)決定,本文建立的骨塊模型為長20mm、寬20mm.、高10mm(表面為皮質(zhì)骨,內(nèi)部為松質(zhì)骨,其中皮質(zhì)骨厚度1mm,其余為松質(zhì)骨)的立方體,以使其有足夠的寬度來評(píng)估微種植體周圍的應(yīng)力分布。因此設(shè)定微種植體骨內(nèi)長度為8mm。2.2裝配微型種植體-下頜骨實(shí)體模型以骨塊模型表面幾何中心為種植體植入點(diǎn),設(shè)定通過植入點(diǎn)平行于一側(cè)骨邊緣為X軸,平行于另一側(cè)為Y軸,垂直于骨表面為Z軸。種植體植入方向分別為:垂直植入和將種植體向Y軸正向傾斜45度角植入。2.3載荷力大小、方式及方向微種植體可承受的正畸力值通常不超過3N。根據(jù)力學(xué)規(guī)律計(jì)算,設(shè)定Load-C加載力值為2×√2N,其余均為2N。載荷方式為單一載荷或雙載荷同時(shí)進(jìn)行。所有加載方向平行于X-Y平面。載荷點(diǎn)位于種植體的頸部。2.4實(shí)驗(yàn)分組設(shè)定與X軸正向方向一致時(shí)加載方向?yàn)?°。實(shí)驗(yàn)分組如下:第一組:微種植體垂直于x-y平面植入Loadl-A施加與x軸正向成0°的正畸力2NLoadl-AB同時(shí)施加與x軸正向成0°和180°兩個(gè)方向的正畸力各2NLoadl-C施加與x軸正向成90°的正畸力2×√2 NLoadl-DE同時(shí)施加與x軸正向成45°和1350兩個(gè)方向的正畸力各2NLoadl-FG同時(shí)施加與x軸正向成250和1550兩個(gè)方向的正畸力各2N第二組:微種植體與y軸正向成45°植入LoadⅡ-A施加與x軸正向成0°的正畸力2NLoadⅡ-AB同時(shí)施加與x軸正向成0°和180°兩個(gè)方向的正畸力各2NLoadⅡ-C1施加與x軸正向成90°并與y軸正向成0°的正畸力2NLoadⅡ-C2施加與x軸正向成90°并與y軸正向成0°的正畸力2×√2NLoadⅡ-D施加與x軸正向成450的正畸力2NLoadⅡ-DE同時(shí)施加與x軸正向成450和135°兩個(gè)方向的正畸力各2NLoadⅡ-F施加與x軸正向成25°的正畸力2NLoadⅡ-FG同時(shí)施加與x軸正向成250和1550兩個(gè)方向的正畸力各2NLoadⅡ-H施加與種植體長軸方向成0°的正畸力2N3材料3.1實(shí)體建模利用電子計(jì)算機(jī)技術(shù),建立頜骨和種植體的三維模型,形成垂直裝配和傾斜45度裝配。假設(shè)模型中的各種材料和組織為連續(xù)、均質(zhì)、各向同性的線彈性材料,材料變形為彈性小變形。3.2網(wǎng)格劃分利用電子計(jì)算機(jī)技術(shù),導(dǎo)入三維模型到有限元建模軟件Hyperwork12.0的Hypermesh模塊中,完成整個(gè)模型網(wǎng)格劃分。3.3部件連接將有限元網(wǎng)格模型導(dǎo)入到Abaqus6.13中,根據(jù)提供的不同部件的材料屬性,建立并賦予各部件材料屬性。設(shè)定種植體—骨界面間摩擦系數(shù)為0.3。4計(jì)算利用Hyperworks13.0的Hyperview模塊查看計(jì)算結(jié)果,采集各組Von-Mises應(yīng)力值、壓應(yīng)力值、拉應(yīng)力值及位移值,并分析其應(yīng)力分布和應(yīng)變規(guī)律。結(jié)果:1建立了微種植體垂直和傾斜45度植入的頜骨模型,其生物相似性好,滿足力學(xué)運(yùn)算要求。2在微種植體以垂直和傾斜植入的兩組模型中,不同加力方式下的應(yīng)力和位移峰值主要集中在有力值加載部位的骨邊緣處。這說明應(yīng)力和位移的峰值主要集中在皮質(zhì)骨。由皮質(zhì)骨過渡到松質(zhì)骨,應(yīng)力和位移的數(shù)值呈現(xiàn)遞減趨勢。3當(dāng)微種植體垂直植入時(shí),Von-Mises應(yīng)力峰值由8.72到0.7186MPa,位移峰值由5.525到0.2016μm。其中相交成90°的復(fù)合載荷組LoadⅠ-DE,應(yīng)力峰值及位移峰值最大;其次為單一載荷組LoadⅠ-A即傳統(tǒng)加力方式,然后是相交成130°的復(fù)合載荷組LoadⅠ-FG,峰值最小的是方向相反的復(fù)合載荷組LoadⅠ-AB。值得注意的是,加載方向?yàn)?0°,加載力值為2×√2 N的載荷組LoadⅠ-C與相交成90°的復(fù)合載荷組LoadⅠ-DE應(yīng)力峰值與位移峰值相差不多。4傾斜植入時(shí),Von-Mises應(yīng)力峰值由7.293到0.2612MPa,位移峰值由5.237到0.1597μm。最大值依然出現(xiàn)在LoadⅡ-DE組,最小值也同樣為LoadⅡ-AB組。單一載荷時(shí)施加相同正畸力(2N)的LoadⅡ-A、LoadⅡ-F、 LoadⅡ-D、LoadⅡ-C1、LoadⅡ-H在應(yīng)力和位移峰值上呈現(xiàn)出遞減的趨勢;施加2×√2N的LoadⅡ-C2與施加2N的LoadⅡ-A應(yīng)力和位移峰值相差不多。5各載荷方式下,傾斜植入組應(yīng)力峰值均小于垂直植入組;而Load-FG組傾斜植入時(shí)的位移峰值與垂直植入時(shí)差別不大。結(jié)論:1種植體垂直植入及傾斜植入,同時(shí)加載兩個(gè)方向相反、大小相等的垂直于種植體長軸的力時(shí),骨界面應(yīng)力分布最均勻,也最有利于種植體的穩(wěn)定。2種植體垂直植入,復(fù)合載荷時(shí)的合力基本符合平行四邊形法則,復(fù)合載荷交角越小合力越大,骨界面應(yīng)力峰值越大,載荷方向越接近于相反,骨界面受力越小。3種植體傾斜植入,所有單一載荷及復(fù)合載荷的骨界面應(yīng)力分布均優(yōu)于種植體垂直植入;復(fù)合載荷時(shí)的合力不符合平行四邊形法則;載荷力矩隨著載荷方向的不同發(fā)生改變,載荷力矩越小,種植體-骨界面所受應(yīng)力越小,具有重要的臨床指導(dǎo)意義。
[Abstract]:Objective: in the course of clinical orthodontic treatment, the control of anchorage is often the key factor affecting the effect of the treatment. If the control of the support is not good or even can lead to the failure of the treatment, the microimplant anchorage technique has been gradually applied to clinical orthodontic treatment in recent years with the original anchorage control device. Small, flexible implantation, small trauma and other reasons are widely welcomed, which greatly expand the scope of orthodontic treatment. However, the occurrence of the miniature implants occurs when the success rate is reported to be 89%, which affects the extensive development of the anchorage implant. The factors affecting the stability of the implant include biological stability and biological force. The development of material science has greatly improved the biological stability of the implant, so the biomechanical stability of the implant has been gradually paid attention to. Scholars have done a lot of research on the mechanical effects of repairing implants, but the microimplants are obviously different from the implant, the implant placement and the way they load the implant. A lot of differences. Some scholars have studied the angle of implants implantation and the direction of load. It is found that the stress distribution of the implant bone interface is obviously affected by the two. But in clinical practice, the load mode of the anchorage implant is more complex and changeable, it may be a single load, and it may be a compound load, and it will be based on different loads. At present, the effects and laws of different load modes on the stress distribution of implant bone interface are not yet clear, and no literature has been reported. Three dimensional finite element method is an important method and means to analyze the biomechanics of oral implant. It has been widely used in the field of oral cavity. The accurate model of dental maxillary system can simulate the change of displacement and stress of the implant and its surrounding tissue under different loads. Because of the small influence of other factors, it is a more reliable method to study the microimplants. This experiment has established two kinds of bone mass model of implants by three-dimensional finite element analysis. To simulate the stress distribution and displacement changes of the tissue around the implant under different load modes, the stress distribution and displacement of the implant bone interface in different loading modes are observed and the stress distribution of implant bone interface in different loading ways is investigated. Method: 1 experimental equipment computer: notebook workstation, Dell precision (Intel (R) Core (TM) i7-4800MQ CPU@2.70GHz:32G memory, win7,64 bit operating system) software package: Mimics, Catia V5, 12, 2 micro implant jaw model 2.1 to establish model clinical for the purpose of making A micro implant as an anchorage can be implanted in any part of the jaw. Its diameter and length are limited. A micro implant with a diameter of 1.6mm is simulated in this paper. The height of the thread is 0.3mm, the thread spacing is 0.5mm, the thread top angle is 600, the material is pure titanium. The length of the implant is generally determined by the anatomical shape of the implant. This article is established in this article. The bone mass model is long 20mm, wide 20mm., high 10mm (the surface is cortical bone, the internal is the cancellous bone, the cortical bone thickness 1mm, the rest is the cancellous bone) cube, so that it has enough width to evaluate the stress distribution around the microimplant. Therefore, the microimplant bone length is 8mm.2.2 assembly Micro Implant mandible solid model. Using the surface geometry center of the bone block model as the implant insertion point, the implant point is parallel to one side of the bone edge as the X axis, parallel to the other side and the Y axis and the Z axis on the bone surface. The implant direction is the vertical implantation and the implantation of the implant to the Y axis in the direction of the.2.3 load of 45 degrees, and the direction and direction of the implant. The orthodontic force values of the body are usually not more than 3N. according to the mechanical law, and the Load-C loading force is set at 2 x 2N, the rest are both single load or double load with 2N. load. All loading directions are parallel to the X-Y plane. The load point is located at the neck of the implant and the X axis is in the same direction as the positive direction of the X axis. The experimental group was 0 degrees. The first group was as follows: the first group: the micro implant was implanted vertically on the X-Y plane by Loadl-A to apply orthodontic force 2NLoadl-AB with the positive force of the X axis and the orthodontic force of the X axis forward into 0 degrees and 180 degrees. The orthodontic force 2 * 2 NLoadl-DE of the X axis was applied to the positive force of the X axis and the positive force of the X axis was simultaneously applied to the X axis forward 45 degrees. The orthodontic forces in the 1350 and two directions were simultaneously applied to the orthodontic forces of the X axis and the forward formation of the orthodontic forces in 250 and 1550 two directions: the micro implants and the Y axis forward 45 degree implantation to Load II -A exerted the orthodontic force 2NLoad II -AB at the positive force of the X axis and the forward formation of the X axis and the orthodontic force of the X axis forward 0 and 180 degrees two. The orthodontic force exerted by the orthodontic force 2NLoad II -C2 with the positive force of the X axis 90 degrees and the positive 0 degrees of the Y axis is applied to the orthodontic force of the X axis forward 90 degrees and the positive force of the Y axis, 2 * 2NLoad II -D exerted on the positive force of the X axis forward 450, and exerts the orthodontic force of the forward formation of the X axis and the forward formation of the 450 and 135 degrees in the forward 450 and 135 degree two directions. The orthodontic force 2NLoad II -FG is applied to the orthodontic force of the orthodontic force each of the X axis in 250 and 1550 directions and the orthodontic force 2N3 material is applied to the long axis of the implants and the orthodontic force 2N3 material 3.1 solid modeling using the electronic computer technology to establish the three-dimensional model of the jaw and the implant, forming the vertical assembly and the inclined 45 degrees assembly. All kinds of materials and tissues are continuous, homogeneous, isotropic linear elastic materials, the material is deformed into elastic small deformation.3.2 mesh division using electronic computer technology, the 3D model is introduced into the Hypermesh module of the finite element modeling software Hyperwork12.0, and the whole model grid is divided into the.3.3 component connection and the finite element mesh model is introduced into the model. In Abaqus6.13, according to the material properties of the different components provided, the material properties of each component are established and given. The friction coefficient between the implant bone interface is set up and the calculation results are examined by the Hyperview module of Hyperworks13.0, and the Von-Mises stress values, the compressive stress values, the tensile stress values and the displacement values are collected, and the stress points are analyzed. Results: 1 the mandible model of vertical and 45 degree implantation of micro implant was established. The biological similarity was good, and the stress and displacement peak in different loading modes were mainly concentrated in the bone edge of the loading position in the two models of the mechanical operation requirements that.2 was implanted vertically and tilted in the micro implant. The peak stress and displacement are mainly concentrated in the cortical bone. Transition from cortical bone to cancellous bone, the values of stress and displacement show decreasing trend.3, when the microimplant is vertically implanted, the peak value of Von-Mises stress is from 8.72 to 0.7186MPa, and the peak value of displacement is from 5.525 to 0.2016 mu m. in the compound load group of Load I -DE, the peak stress and the stress peak. The peak displacement is the largest, followed by a single load group Load I -A, that is, the traditional loading method, and then the composite load group Load I -FG intersected into 130 degrees, and the minimum peak is the Load I -AB. with the opposite direction of the load, which is worth noting that the loading direction is 90 degrees, the loading force value is 2 * 2 N and the compound load of Load I -C and intersecting 90 degrees. When the peak value of Load I -DE is not much different from the peak displacement peak, the peak value of Von-Mises stress is from 7.293 to 0.2612MPa, and the peak value of the displacement from 5.237 to 0.1597 mu m. still appears in the Load II -DE group, and the minimum value is also the Load II -AB group. II -C1, Load II -H showed a decreasing trend at the peak stress and displacement peak, and the difference between the Load II -C2 and the Load II -A stress and displacement peak of 2 x 2N was not much higher than that of the vertical implantation group, while the peak value of the tilted implant group was less than that of the vertical implantation group, while the peak displacement of the Load-FG group was not different from the vertical implantation time. Conclusion: 1 the vertical implantation of the implant and the inclined implants, while loading two opposite directions, and the same size perpendicular to the force of the long axis of the implant, the stress distribution of the bone interface is the most uniform and is most beneficial to the vertical implantation of the stable.2 implant of the implant. The resultant force of the compound load is basically in accordance with the parallelogram rule, the more the composite load is the intersection angle. The greater the small resultant force, the greater the stress peak of the bone interface, the closer the load direction to the opposite, the smaller the stress of the bone interface, the less the.3 implant is inclined, and the stress distribution of all the single load and the composite load is better than the vertical implantation of the implant; the resultant force does not conform to the horizontal quadrangle rule, and the load torque is along with the load direction. The smaller the load moment, the smaller the stress on implant bone interface.
【學(xué)位授予單位】:河北醫(yī)科大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:R783.6
,

本文編號(hào):1899311

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/kouq/1899311.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f1690***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
东京热电东京热一区二区三区| 麻豆视传媒短视频免费观看| 国产一级内射麻豆91| 91精品国自产拍老熟女露脸| 欧美二区视频在线观看| 99久久国产精品亚洲| 日韩中文字幕有码午夜美女| 麻豆在线观看一区二区| 免费久久一级欧美特大黄孕妇| 东京热加勒比一区二区三区| 亚洲国产成人一区二区在线观看| 日本久久精品在线观看| 亚洲熟妇av一区二区三区色堂 | 日本中文字幕在线精品| 又黄又色又爽又免费的视频| 日本深夜福利视频在线| 免费特黄一级一区二区三区| 日本高清视频在线播放| 日韩精品一级片免费看| 色哟哟哟在线观看视频| 国产日韩欧美在线播放| 精品一区二区三区人妻视频| 亚洲欧美日韩国产成人| 久久精品国产亚洲熟女| 国产av一区二区三区四区五区| 五月激情综合在线视频| 国产精品夜色一区二区三区不卡| 黑丝袜美女老师的小逼逼| 亚洲高清一区二区高清| 日本 一区二区 在线| 91欧美视频在线观看免费| 九九热这里只有精品视频| 国产午夜精品亚洲精品国产| 国产成人人人97超碰熟女| 国产欧美一区二区色综合| 日本一二三区不卡免费| 亚洲欧美国产网爆精品| 亚洲综合色在线视频香蕉视频| 午夜直播免费福利平台| 超碰在线免费公开中国黄片| 四季精品人妻av一区二区三区|