GPR50調(diào)控β-淀粉樣蛋白產(chǎn)生的機制研究
[Abstract]:Background and purpose of the study: Alzheimer's disease (AD) is a common neurodegenerative disease, and its clinical manifestations are memory and cognitive function. Obstacles. AD in the pathology mainly includes the nerve fiber entanglement and the extracellular starch in the nerve cell The main component of the amyloid plaques is the peptide of the P-amyloid (A-type) in the outside of the cell. The effect of AICD on the loss of the spinous process of the nerve, the inhibition of the plasticity of the nerve, the apoptosis of the cells and so on. Therefore, inhibition or reduction of the generation of A-type is an important part of the current AD treatment Direction. The enzyme is the main speed-limiting enzyme of the starch-like pathway, and BACE1 is the main speed-limiting enzyme of the beta-site APP-cleaning enzyme. It plays a key role in the production of A-enzyme and is in the brain. The expression of BACE1 in the brain of AD patients and the activity of BACE1 in the brain of AD patients. So how to control BACE1 and reduce the generation of A-type is one of the areas of AD research. In recent years, more and more studies have shown that G-protein-coupled receptor (GPCR) has been in the process of AD. It plays an important role in the process. It can regulate the metabolism of APP in the brain by regulating the activity of the P-, The GPR50, as a member of the GPCRs family, is a G-protein-coupled receptor, and the GPR50 is expressed in the dentate nucleus of the hippocampus of the human brain. In combination with the above research background, it is suggested that the GPR50 may be involved in the pathogenesis of AD, this study is to explore the mechanism of action of GPR50 on the amyloid-like protein, and to develop and develop the drug for AD. Diagnosis and treatment providing section Basis of study. Study content: 1, GP R50 impact on A-level and mechanism. 2, GP R50 Effects on BACE1 and Mechanism of Action. Method: 1, fine Detection of cell viability: Cell viability was detected using the MTT assay. 2, GPR50, BACE1, APP were in the human brain or cell The distribution and co-location of GPR50mRNA and BACE1mR were detected by immunofluorescent techniques. Horizontal expression of NA: combined with RT-PCR and agarose gel electrophoresis. A-40, A-42 concentration detection: detection by ELISA method with reference to the specification. 5. Detection of protein expression level: use of the Westin The expression of GPR50, BACE1, APP, CTFs and lysosomes were detected by n-blot. Sex: Test according to the Manual-Secrease Activity Assay Kit instructions. 7, GPR50 vs. (BAC) E1, GPR50 and APP protein cross-correlation System: The relationship between protein and protein was studied by the method of immunoprecipitation. Results: 1. The control effect of GPR50 on A-antigen was 1. 1GPR50 inhibited the production of A and the metabolism of APP. 1. The 2GPR50 plasmid was transfected into HEK-APP cells to inhibit the production of A-antigen 40 and A-antigen 42, and to inhibit the production the expression dose-dependent effect. 1. 3 in primary cultured neurons in that expression of the GPR50 siRNA-silent GPR50, a significant increase in the level of A-antigen was found. The GPR50 is produced by the regulation of the inhibition of A-enzyme by the hormone-secreting enzyme. Over-expression of the GPR50 can reduce the level of expression of the F-CTF, The level of F-CTF expression did not change significantly. The regulation and mechanism of GPR50 on BACE1 2. 1GPR50 co-located with BACE1 and interacts. 2. 2 in HEK-293 The expression of GPR50, BACE1 activity and protein level in the cells was significantly reduced. The overexpression of GPR50 did not affect the HEK-293 cells and the gods. Overexpression of GPR50 could accelerate the degradation of BACE1 protein after the treatment with a lysosome inhibitor of BACE1mRNA. R50-FLAG and BACE1-HA significantly increased the ratio of BACE1 and LAMP-1 co-localization; the ratio of BACE1 and LAMP-1 co-location decreased after silence GPR50 expression. Conclusion: GPR50 is inhibited by inhibition of B
【學(xué)位授予單位】:蘇州大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:R749.16
【共引文獻】
相關(guān)期刊論文 前10條
1 葉斌;周農(nóng);張干;劉睿;;主觀記憶損害的神經(jīng)心理學(xué)特征和認知事件相關(guān)電位P300的變化[J];蚌埠醫(yī)學(xué)院學(xué)報;2013年09期
2 李興強;曹云鵬;;腦老化與β淀粉樣蛋白沉積[J];國際神經(jīng)病學(xué)神經(jīng)外科學(xué)雜志;2013年Z1期
3 邵奕嘉;陳莉智;羅利;郭開華;徐杰;;金雀異黃酮對岡田酸誘導(dǎo)大鼠血小板Tau蛋白過度磷酸化的保護作用及機制[J];解剖學(xué)研究;2014年01期
4 朱麗娟;陳筱山;何選麗;戚韻雯;晏勇;;外源性硫化氫對高糖條件下原代神經(jīng)元β淀粉樣蛋白的影響[J];南方醫(yī)科大學(xué)學(xué)報;2014年04期
5 張曉;魏平;譚明紅;張艷偉;張久權(quán);;2型糖尿病患者糖化血紅蛋白水平控制及胰島素使用對認知功能的影響[J];第三軍醫(yī)大學(xué)學(xué)報;2014年10期
6 張玉琴;韓岱;葉小蘋;吳曉宇;;腦梗死后認知功能與血尿酸的關(guān)系[J];安徽醫(yī)學(xué);2014年08期
7 方旭明;劉芳;朱英武;武琪;徐竹;陳紅群;楚蘭;;貴陽市農(nóng)村老年人輕度認知功能障礙篩查[J];貴陽醫(yī)學(xué)院學(xué)報;2014年04期
8 陳黛琪;范勝蘭;;癡呆患者院內(nèi)走失事件原因分析[J];神經(jīng)損傷與功能重建;2014年05期
9 王雪峰;孔祥俊;;抑郁癥和癡呆關(guān)系的meta分析[J];甘肅醫(yī)藥;2014年09期
10 王延江;卜先樂;;阿爾茨海默病的防治研究進展[J];第三軍醫(yī)大學(xué)學(xué)報;2014年21期
相關(guān)會議論文 前1條
1 潘攀;梁躍;萬明雨;唐淵博;;三焦針法治療老年癡呆機制的基礎(chǔ)研究進展[A];中華中醫(yī)藥學(xué)會養(yǎng)生康復(fù)分會第十二次學(xué)術(shù)年會暨服務(wù)老年產(chǎn)業(yè)研討會論文集[C];2014年
相關(guān)博士學(xué)位論文 前10條
1 時建銓;新型抗癲癇藥對APPswe/PS1dE9雙轉(zhuǎn)基因小鼠病理學(xué)與行為學(xué)的影響及機制研究[D];南京醫(yī)科大學(xué);2013年
2 牛海晨;重復(fù)嗎啡注射誘導(dǎo)生理戒斷和心理渴求的神經(jīng)影像學(xué)與行為學(xué)研究[D];中國科學(xué)院研究生院(武漢物理與數(shù)學(xué)研究所);2012年
3 常曉慧;組分中藥金智達對認知功能的改善及其相關(guān)機制的研究[D];大連醫(yī)科大學(xué);2012年
4 霍妍;Nogo氨基末端在視神經(jīng)再生中的作用及機制研究[D];第三軍醫(yī)大學(xué);2013年
5 曾育琦;雷公藤氯內(nèi)酯醇通過改善突觸可塑性、調(diào)節(jié)Aβ代謝、抑制神經(jīng)炎癥反應(yīng)減輕5XFAD轉(zhuǎn)基因小鼠的認知損害[D];福建醫(yī)科大學(xué);2013年
6 楊振東;鈣穩(wěn)態(tài)失衡對鈣記憶相關(guān)蛋白表達的影響機制及鈣離子調(diào)節(jié)劑臨床療效的薈萃分析[D];華中科技大學(xué);2013年
7 王景濤;載脂蛋白E基因多態(tài)性與中國漢族不同類型癡呆關(guān)系的研究[D];北京協(xié)和醫(yī)學(xué)院;2010年
8 張婷;淫羊藿苷聯(lián)用三七總皂苷對AD模型鼠學(xué)習(xí)記憶的影響及其作用機制探討[D];中南大學(xué);2013年
9 帕麗丹·吾術(shù)爾;老年癡呆異常黑膽質(zhì)病證結(jié)合模型的建立及異常黑膽質(zhì)成熟劑的干預(yù)研究[D];新疆醫(yī)科大學(xué);2013年
10 覃媛媛;全腦定量結(jié)構(gòu)MRI和DTI對阿爾茨海默病的實驗和臨床研究[D];華中科技大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 田輝宇;蛋白激酶C在炎癥大鼠下丘腦弓狀核神經(jīng)元可塑性變化中的作用[D];蘇州大學(xué);2013年
2 周宗麗;三轉(zhuǎn)基因Alzheimer癥模型小鼠的社會行為學(xué)和一種新型M1受體激動劑對該小鼠的影響[D];華東師范大學(xué);2013年
3 郭曉光;EGCG對阿爾茨海默病模型大鼠海馬c-Abl/p73信號通路的影響[D];河北醫(yī)科大學(xué);2013年
4 牟佩佩;血小板Sema4D鈣調(diào)蛋白結(jié)合基序的鑒定及其調(diào)控Sema4D切割的機制研究[D];蘇州大學(xué);2013年
5 陽玉群;甘露醇對骨髓間充質(zhì)干細胞治療血管性癡呆模型大鼠行為學(xué)及Nogo蛋白表達影響[D];廣西醫(yī)科大學(xué);2013年
6 王飛;芐基哌啶類衍生物的設(shè)計、合成與多靶點抗AD活性研究[D];浙江大學(xué);2013年
7 梁良;中藥I號對APP/PS1雙轉(zhuǎn)基因阿爾茲海默病模型小鼠治療作用的機制研究[D];北京協(xié)和醫(yī)學(xué)院;2013年
8 趙鈞如;ABIN1與μ阿片受體功能的相互調(diào)節(jié)[D];中國人民解放軍軍事醫(yī)學(xué)科學(xué)院;2013年
9 黃海芬;功能性經(jīng)顱多普勒對AD與VaD患者膽堿酯酶抑制劑療效的評價[D];南華大學(xué);2013年
10 葉青;康復(fù)訓(xùn)練通過調(diào)控海馬β淀粉樣蛋白表達改善血管性癡呆[D];南華大學(xué);2013年
本文編號:2339277
本文鏈接:http://sikaile.net/yixuelunwen/jsb/2339277.html