判別性子圖挖掘方法及其在MCI分類中的應(yīng)用
發(fā)布時(shí)間:2018-10-19 13:10
【摘要】:最近,腦連接網(wǎng)絡(luò)已經(jīng)被用于神經(jīng)退行性疾病(如阿爾茨海默病AD以及輕度認(rèn)知障礙MCI)的診斷和分類.以往典型方法是從腦連接網(wǎng)絡(luò)中提取一些特征(如局部聚類系數(shù)等)構(gòu)成一個(gè)長特征向量,并用其訓(xùn)練一個(gè)分類器用于最終的分類.然而,上述方法的一個(gè)缺點(diǎn)是未能充分考慮網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)信息,因而限制了分類性能的進(jìn)一步提升.提出一種基于判別子圖挖掘的腦連接網(wǎng)絡(luò)分類方法.首先分別從正類訓(xùn)練樣本集和負(fù)類訓(xùn)練樣本集中挖掘頻繁子網(wǎng)絡(luò)(即頻繁子圖);然后利用基于圖核的方法來衡量頻繁子網(wǎng)絡(luò)的判別性能,并選擇那些最具判別性的頻繁子網(wǎng)絡(luò)作為判別子網(wǎng)絡(luò)用于后續(xù)的分類;最后,在真實(shí)MCI數(shù)據(jù)集上的實(shí)驗(yàn)驗(yàn)證了該方法的有效性.
[Abstract]:Recently, brain connectivity networks have been used in the diagnosis and classification of neurodegenerative diseases such as Alzheimer's disease (AD) and mild cognitive impairment (MCI). In the past, some features (such as local clustering coefficients) were extracted from the brain junction network to form a long feature vector, and a classifier was used to train a classifier for the final classification. However, one of the disadvantages of the above methods is that the topology information of the network is not fully considered, which limits the further improvement of the classification performance. In this paper, a classification method of brain connection network based on discriminant subgraph mining is proposed. Firstly, frequent subnetworks (i.e. frequent subgraphs) are mined from positive and negative training samples respectively, and then the discriminant performance of frequent subnetworks is evaluated by using graph kernel-based methods. The most discriminant frequent subnetworks are selected as discriminant subnetworks for subsequent classification. Finally, the effectiveness of the proposed method is verified by experiments on real MCI datasets.
【作者單位】: 南京航空航天大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院;
【基金】:江蘇省自然科學(xué)基金杰出青年基金(BK20130034) 高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)基金(20123218110009) 南京航空航天大學(xué)基本科研業(yè)務(wù)費(fèi)(NE2013105) 中央高校基本科研業(yè)務(wù)專項(xiàng)資金(NZ2013306)
【分類號(hào)】:TP311.13;R749.1
[Abstract]:Recently, brain connectivity networks have been used in the diagnosis and classification of neurodegenerative diseases such as Alzheimer's disease (AD) and mild cognitive impairment (MCI). In the past, some features (such as local clustering coefficients) were extracted from the brain junction network to form a long feature vector, and a classifier was used to train a classifier for the final classification. However, one of the disadvantages of the above methods is that the topology information of the network is not fully considered, which limits the further improvement of the classification performance. In this paper, a classification method of brain connection network based on discriminant subgraph mining is proposed. Firstly, frequent subnetworks (i.e. frequent subgraphs) are mined from positive and negative training samples respectively, and then the discriminant performance of frequent subnetworks is evaluated by using graph kernel-based methods. The most discriminant frequent subnetworks are selected as discriminant subnetworks for subsequent classification. Finally, the effectiveness of the proposed method is verified by experiments on real MCI datasets.
【作者單位】: 南京航空航天大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院;
【基金】:江蘇省自然科學(xué)基金杰出青年基金(BK20130034) 高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)基金(20123218110009) 南京航空航天大學(xué)基本科研業(yè)務(wù)費(fèi)(NE2013105) 中央高校基本科研業(yè)務(wù)專項(xiàng)資金(NZ2013306)
【分類號(hào)】:TP311.13;R749.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 熊光潤,陳靜,王虹敏,顧昱,熊芳琴,馮玲,譚曉敏,王靜;輕度認(rèn)知障礙患者情感圖片再認(rèn)的研究[J];神經(jīng)疾病與精神衛(wèi)生;2004年03期
2 趙永波,周曉琳;輕度認(rèn)知障礙[J];神經(jīng)疾病與精神衛(wèi)生;2004年05期
3 馬立華;;輕度認(rèn)知障礙研究現(xiàn)狀[J];中國醫(yī)學(xué)文摘.內(nèi)科學(xué);2004年01期
4 劉彬,韶紅,彭永革,丁惠瑩;對深圳羅湖區(qū)老年人輕度認(rèn)知障礙的調(diào)查與分析[J];廣州中醫(yī)藥大學(xué)學(xué)報(bào);2005年05期
5 馬立華;董萬青;林桂珍;;輕度認(rèn)知障礙患者血脂水平的關(guān)系[J];心腦血管病防治;2005年06期
6 聞紅斌;周宏斌;;輕度認(rèn)知障礙患者的腦血流變化[J];中國臨床康復(fù);2005年37期
7 宇輝;張志s,
本文編號(hào):2281215
本文鏈接:http://sikaile.net/yixuelunwen/jsb/2281215.html
最近更新
教材專著