貝葉斯網(wǎng)絡(luò)模型在老年人認(rèn)知功能評(píng)價(jià)隊(duì)列研究中的應(yīng)用
[Abstract]:Objective: Based on the natural history of Alzheimer disease (AD), the Bias network model was applied to the cognitive evaluation of elderly people, the reasoning and prediction model of cognitive function evaluation for the elderly was established, and the factors affecting the cognitive function of the elderly were discussed, and the theoretical basis for the formulation of the prevention measures at different stages of AD was provided. At the same time, from the practical point of view, we excavate the advantages of Bayesian statistics in the cohort study data analysis, provide methodology for other chronic disease process research, and extend the concept of precision medicine to the risk prediction of disease. The subjects with normal aging, mild cognitive impairment (Mild Cognitive Impairment, MCI), MCI to moderate to severe cognitive impairment, moderate to severe cognitive impairment and whether or not AD transfer to construct Logistic regression model, select factors that affect cognitive degradation, and will enter all variables of the model to construct Bayesian network model and analyze the probability of each variable. Rate dependence, and using the 90% off cross validation method to evaluate the model data and the follow-up data of May 2016, to realize the reasoning and prediction of cognitive function evaluation for the elderly. Results: 1, the results of Logistic regression model show that age (OR:1.794,95%CI: 1.200-2.682), sex (OR:4.125,95%CI:2.017-8.436), education degree (OR:0.633,95%CI:0.448-0.894), the degree of depression (OR:4.458,95%CI:1.915-10.377), hypertension (OR:2.346,95%CI:1.086-5.069) had an effect on the transfer of normal aging to MCI; age (OR:2.450,95%CI:1.212-4.953), sex (OR:0.118,95%CI:0.031-0.442), educational level (OR:0.614,95%CI:0.375-1.004), character (OR:0.092,95%CI:0.013-0.662), Marital status (OR:0.272,95%CI:0.086-0.862), family per capita income (OR:0.456,95%CI:0.273-0.762), physical activity (OR:0.631,95%CI:0.407-0.980) and reading and reading (OR:0.432,95%CI:0.188-0.992), degree of depression (OR:97.144,95%CI:21.452-439.909), hypertension (OR:0.304,95%CI:0.077-1.199), and history of brain trauma (OR:0.188,95%CI:0.037-0.959) The influence of MCI to moderate severe cognitive impairment; sex (OR:0.328,95%CI:0.087-1.234), marital status (OR:0.102,95%CI:0.043-0.243), pre retirement occupation (OR:7.799,95%CI:1.242-48.955), drinking (OR:0.126,95%CI:0.016-0.997), and degree of depression (OR:3.560,95% CI:0.998-12.705) were statistically significant in moderate to severe cognitive impairment to AD metastasis. .2, the nodes used to build Bayesian network structure include cognitive function, degree of depression, sex, age, personality, education, marital status, family per capita income, pre retirement occupation, reading and reading, physical activity, drinking, brain trauma history, hypertension. The expected loss of the model is 10.28, and the predictive effectiveness of the Bayesian network is better than that of the Bayesian network. The accuracy of the cognitive function was 77.14%, the sensitivity was 77.14%, the sensitivity was 0.869, the specificity was 0.770, the accuracy of the depression was 80.07%, the sensitivity was 0.801. The specificity was the hypertension, the degree of education, the degree of occupation and depression before the rest, the sex, and the family per person. Income, marital status, reading and reading, physical activity, and character respectively through the degree of education, pre occupation, depression, and hypertension indirect effect on cognitive function. Conclusion: 1, hypertension, education, the degree of occupation and depression before retirement and the cognitive work of the elderly may have direct causal relationship, sex, family per capita income, marriage The status of reading, reading, reading, physical activity and character may be indirectly influenced by the degree of education, the occupation before the rest, the degree of depression, and the hypertension. The elderly in the normal life are reading more, carrying out proper physical activity, developing the extroverted character and drinking wine, which may delay the degenerative.2 of cognition and memory, and the Bias network Applied to the cognitive cohort study of the elderly, we can intuitively understand the relationship between the factors affecting the cognitive function, and realize the causal inference and the individual's disease risk prediction, indicating its advantages in medical research and the feasibility of practice in other diseases.
【學(xué)位授予單位】:山西醫(yī)科大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:R749.16;R181.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 焦怡琳;王吉春;張群;何廣學(xué);;中國(guó)在精準(zhǔn)醫(yī)學(xué)領(lǐng)域面臨的機(jī)遇與挑戰(zhàn)[J];中國(guó)公共衛(wèi)生管理;2015年05期
2 馮榮芳;劉惠卿;賈艷麗;王建華;李美錫;孫素娟;孫占用;;MMSE和MoCA在不同類型輕度認(rèn)知障礙篩查中的應(yīng)用[J];腦與神經(jīng)疾病雜志;2015年05期
3 楊振;張冬梅;陳任;胡志;王晶晶;陳若陵;;我國(guó)五省(市)老年癡呆照料現(xiàn)狀調(diào)查分析[J];安徽醫(yī)學(xué);2013年06期
4 唐丹;;簡(jiǎn)版老年抑郁量表(GDS-15)在中國(guó)老年人中的使用[J];中國(guó)臨床心理學(xué)雜志;2013年03期
5 王廣州;戈艷霞;;中國(guó)老年人口喪偶狀況及未來(lái)發(fā)展趨勢(shì)研究[J];老齡科學(xué)研究;2013年01期
6 李建民;杜鵬;桂世勛;張翼;;新時(shí)期的老齡問(wèn)題我們應(yīng)該如何面對(duì)[J];人口研究;2011年04期
7 高中寶;王煒;尚延昌;柏秀娟;吳衛(wèi)平;;蒙特利爾認(rèn)知量表中文版診斷老年輕度認(rèn)知功能損害的應(yīng)用研究[J];中華保健醫(yī)學(xué)雜志;2011年03期
8 于大林;肖軍;;阿爾茨海默病的流行病學(xué)調(diào)查現(xiàn)況[J];實(shí)用醫(yī)院臨床雜志;2011年03期
9 唐娟娟;肖軍;;蒙特利爾認(rèn)知評(píng)估量表與簡(jiǎn)易精神狀態(tài)量表在認(rèn)知功能障礙篩查中的應(yīng)用與比較[J];實(shí)用醫(yī)院臨床雜志;2011年02期
10 田金洲;時(shí)晶;苗迎春;王平;孔明望;;阿爾茨海默病的流行病學(xué)特點(diǎn)及其對(duì)公共衛(wèi)生觀念的影響[J];湖北中醫(yī)學(xué)院學(xué)報(bào);2009年01期
相關(guān)博士學(xué)位論文 前2條
1 胡春玲;貝葉斯網(wǎng)絡(luò)結(jié)構(gòu)學(xué)習(xí)及其應(yīng)用研究[D];合肥工業(yè)大學(xué);2011年
2 宮秀軍;貝葉斯學(xué)習(xí)理論及其應(yīng)用研究[D];中國(guó)科學(xué)院研究生院(計(jì)算技術(shù)研究所);2002年
相關(guān)碩士學(xué)位論文 前1條
1 陳固勝;基于動(dòng)態(tài)貝葉斯網(wǎng)絡(luò)的戰(zhàn)場(chǎng)信息預(yù)測(cè)與評(píng)估[D];南京理工大學(xué);2013年
,本文編號(hào):2125773
本文鏈接:http://sikaile.net/yixuelunwen/jsb/2125773.html