大鼠theta和gamma神經(jīng)振蕩參與調(diào)節(jié)突觸可塑性及潛在機(jī)制探究
本文關(guān)鍵詞: 神經(jīng)振蕩 theta節(jié)律 gamma節(jié)律 突觸可塑性 抑郁癥 C6膠質(zhì)瘤 出處:《南開大學(xué)》2013年博士論文 論文類型:學(xué)位論文
【摘要】:研究背景 大腦對復(fù)雜的認(rèn)知功能的執(zhí)行需要多個腦區(qū)間的神經(jīng)元相互協(xié)同作用,而大腦中的神經(jīng)振蕩將相關(guān)的神經(jīng)元集群的活動聯(lián)系在一起,為腦區(qū)間的協(xié)調(diào)作用提供了機(jī)制。Theta和gamma振蕩是中樞神經(jīng)系統(tǒng)中非常重要的兩類神經(jīng)振蕩,它們不僅作為諸多認(rèn)知和記憶功能實(shí)現(xiàn)的關(guān)鍵因素,還參與了多種神經(jīng)精神疾病中功能缺失的調(diào)節(jié)。突觸可塑性是認(rèn)知和記憶過程的細(xì)胞學(xué)基礎(chǔ),那么神經(jīng)振蕩與突觸可塑性之間的聯(lián)系可能是其調(diào)節(jié)認(rèn)知功能的潛在機(jī)制。 目的 本研究通過建立大鼠病理模型,并將電生理實(shí)驗(yàn)與數(shù)值計(jì)算方法相結(jié)合,深入地探討theta和gamma節(jié)律及其相位同步、相位耦合以及相位-幅值交叉耦合(PAC)是如何反映突觸可塑性的改變,進(jìn)而調(diào)控認(rèn)知功能的潛在機(jī)制。 方法 實(shí)驗(yàn)動物分為三部分 第一部分:成年雄性Wistar大鼠18只,隨機(jī)分為正常組(Con,n=6)、應(yīng)激模型組(Dep,n=6)和美金剛治療組(MEM,n=6)對Dep和MEM組采用慢性不可預(yù)見性應(yīng)激(CUS)模型進(jìn)行21天建模。從建模第2天起對MEM組大鼠腹腔給予美金剛藥物,至建模完成后1天。建模過程中測量體重并進(jìn)行糖水?dāng)z入/消耗實(shí)驗(yàn)以驗(yàn)證建模成功。隨后的電生理實(shí)驗(yàn)中記錄丘腦LDDM核團(tuán)和前額葉皮層(mPFC)的局部場電位(LFPs),之后誘導(dǎo)這條通路的長時程增強(qiáng)(LTP)。通過數(shù)值計(jì)算分析采集的LFPs數(shù)據(jù),分別應(yīng)用多窗譜估計(jì)法計(jì)算功率譜能量、樣品熵計(jì)算信號復(fù)雜度、相鎖值(PLV)度量相位同步、演化映射法(EMA)和條件互信息(CMI)度量耦合方向指數(shù)和單向耦合系數(shù)。 第二部分:成年雄性Wistar大鼠44只,隨機(jī)分為正常組(Con,n=14)、應(yīng)激模型組(Dep,n=14)、多巴胺D1受體拮抗劑干預(yù)組(SCH, n=8)和5-HT1A受體激動劑干預(yù)組(8-OH,n=8)其中Con組和Dep組各6只大鼠作補(bǔ)充實(shí)驗(yàn)。其中只對Dep組大鼠建立CUS模型。對SCH和8-OH組,分別給予急性側(cè)腦室注射SCH-23390和8-OH-DPAT。隨后對四組大鼠進(jìn)行電生理實(shí)驗(yàn),誘導(dǎo)腹側(cè)海馬CA1-mPFC通路的LTP,并分別在加藥前后和LTP前后記錄這兩個腦區(qū)的自發(fā)LFPs。通過數(shù)值計(jì)算分析采集的LFPs數(shù)據(jù),分別應(yīng)用多窗譜估計(jì)法計(jì)算功率譜能量、PLV度量相位同步、EMA和CMI度量單向耦合系數(shù)、PAC多種算法度量theta與低頻gamma (LG)和theta與高頻gamma (HG)節(jié)律間的交叉耦合強(qiáng)度。 第三部分:成年雄性SD大鼠24只,隨機(jī)分為正常對照組(CTRL, n=12)和膠質(zhì)瘤模型組(GLIO,n=12)。對GLIO組大鼠腦內(nèi)注射C6膠質(zhì)瘤細(xì)胞,CTRL組注射DMEM培養(yǎng)基。隨后對兩組大鼠進(jìn)行電生理實(shí)驗(yàn),記錄腫瘤對側(cè)腦區(qū)的背側(cè)海馬CA3和CA1區(qū)的自發(fā)LFPs。通過數(shù)值計(jì)算分析采集的LFPs數(shù)據(jù),分別應(yīng)用PAC多種算法及提出的基于時滯的新算法CF-CMI和CF-EMA來度量節(jié)律間的交叉耦合強(qiáng)度。 結(jié)果 1.CUS增強(qiáng)了mPFC的能量,尤其在delta、theta和beta節(jié)律上。但CUS大鼠mPFC的樣本熵值明顯下降,美金剛對功率譜和樣本熵?zé)o顯著作用。 2.丘腦LDDM-mPFC在theta節(jié)律的耦合方向指數(shù)d及單向的耦合強(qiáng)度指數(shù)cLDDM→mPFC(EMA算法)和iLDDM→mPFC(CMI算法)在CUS大鼠中顯著降低,且美金剛治療后對theta節(jié)律的相位耦合強(qiáng)度有所回升。 3.CUS大鼠海馬CA1-mPFC之間theta節(jié)律的相位耦合受到抑制,與急性加入多巴胺D1受體拮抗劑后變化一致:而gamma節(jié)律的相位耦合被CUS增強(qiáng)了,這與急性給予5-HT1A受體激動劑后的結(jié)果相似。并且,CUS還抑制了海馬CA1區(qū)theta-HG節(jié)律間的PAC強(qiáng)度,同樣的變化發(fā)生在5-HT1A受體的急性激活后。 4.正常大鼠和CUS大鼠中,海馬CA1→mPFC的theta節(jié)律單向相位耦合在誘導(dǎo)LTP后較誘導(dǎo)前均顯著增強(qiáng),但在CUS大鼠中的增強(qiáng)幅度低于正常大鼠,這與海馬CA1-mPFC突觸可塑性在CUS大鼠中的變化相一致。 5.海馬CA1區(qū)theta-LG節(jié)律間PAC強(qiáng)度在高頻刺激后長時程的增強(qiáng)(60min),而theta-HG節(jié)律間PAC強(qiáng)度只存在短時程的增長(30min)。 6.海馬CA3區(qū)的交叉耦合模式以theta-LG節(jié)律間的PAC為主,而CA1區(qū)同時存在theta-LG和theta-HG兩種PAC模式,其中theta-LG的PAC受到了CA3區(qū)神經(jīng)元對其的傳導(dǎo)。C6膠質(zhì)瘤大鼠的CA3區(qū)內(nèi)和CA3-CA1腦區(qū)間theta-LG節(jié)律PAC強(qiáng)度明顯減弱,進(jìn)而使得CA1區(qū)內(nèi)theta-LG節(jié)律PAC也被降低。 7.改進(jìn)了基于時滯參數(shù)τ的兩種新算法CF-CMI和CF-EMA,其應(yīng)用表明CA3-CA1腦區(qū)間PAC在達(dá)到最大強(qiáng)度時的時滯τmax單峰聚集于20ms左右的時間尺度,提示時滯PAC可能是CA3-CA1網(wǎng)絡(luò)中交叉耦合強(qiáng)度的真實(shí)度量。 結(jié)論 1.CUS抑制了丘腦LDDM-mPFC的theta節(jié)律單向相位耦合強(qiáng)度,與其對這條神經(jīng)通路上LTP的抑制相一致,提示丘腦與皮層間的theta節(jié)律相位耦合與突觸可塑性存在著某種聯(lián)系。 2.CUS大鼠中海馬CA1→mPFC的theta節(jié)律單向相位耦合在LTP前后的增幅顯著降低,進(jìn)一步印證了theta節(jié)律的相位耦合與海馬CA1-mPFC突觸可塑性相關(guān)。在海馬CA1區(qū)內(nèi),theta-LG PAC與長時程增強(qiáng)相關(guān),而theta-HG PAC只與短時程增強(qiáng)相關(guān)。 3.CUS對海馬CA1-mPFC之間theta節(jié)律相位耦合的抑制受到多巴胺系統(tǒng)的調(diào)節(jié);而對gamma節(jié)律相位禍合的促進(jìn)可能是激活5-HT1A受體所致。另外,5-HT1A受體還調(diào)節(jié)了海馬CA1區(qū)theta-HG PAC現(xiàn)象。 4.C6膠質(zhì)瘤在大鼠腦內(nèi)的種植降低了海馬CA3-CA1神經(jīng)網(wǎng)絡(luò)中theta-LGPAC的強(qiáng)度,這可能與其對認(rèn)知功能的損傷相關(guān)。 5.海馬CA3-CA1腦區(qū)間存在時滯的PAC現(xiàn)象,能夠更為精確的度量交叉耦合強(qiáng)度,并且時滯可能與突觸傳遞相關(guān)。
[Abstract]:Research background
The brain of complex cognitive functions required for the implementation of multiple brain regions of neurons interact synergistically and neural oscillations in the brain neuron clusters of related activities together, coordinating role for brain regions provides a mechanism for.Theta and gamma oscillation is the central nervous system of two kinds of neural oscillation is very important in the system, they not only as a key factor in many cognitive and memory functions, is also involved in the regulation of a variety of neuropsychiatric disorders and loss of function. The synaptic plasticity is the cellular basis of learning and memory process, then the oscillation between neural and synaptic plasticity contact may be a potential mechanism regulating the cognitive function.
objective
This study established a rat pathological model, combining the experimental and numerical calculation method of physical power, in-depth study of theta and gamma rhythm and phase synchronization, phase coupling and phase amplitude cross coupling (PAC) is how to reflect the changes in synaptic plasticity, potential mechanism and control of cognitive function.
Method
The experimental animals are divided into three parts
The first part: 18 male Wistar rats, were randomly divided into normal group (Con, n=6), stress model group (Dep, n=6) and memantine treatment group (MEM, n=6) on the Dep and MEM groups of chronic unpredictable stress (CUS) model for 21 days. The drug given memantine modeling the rats of group MEM were from modeling second days to 1 days after modeling. The modeling process of measuring the weight and sucrose intake / consumption experiment to verify the modeling success. LDDM nucleus thalamus and prefrontal cortex recorded electrophysiological experiments followed by (mPFC) local field potentials (LFPs), after induction of this the pathway of long-term potentiation (LTP). Through numerical calculation and analysis of LFPs data acquisition, multi window were used to calculate the power spectrum energy spectrum estimation, signal calculation complexity, sample entropy, phase locking value (PLV) to measure the phase synchronization, evolution mapping method (EMA) and mutual information (CMI) to measure the coupling direction index And the unidirectional coupling coefficient.
The second part: 44 male Wistar rats, were randomly divided into normal group (Con, n=14), stress model group (Dep, n=14), dopamine D1 receptor antagonist intervention group (SCH, n=8) and 5-HT1A receptor agonist group (8-OH, n=8) in Con group and Dep group 6 rat complement experiment. Only Dep rats to establish CUS model. The SCH and 8-OH group were given SCH-23390 and acute lateral intraventricular injection of 8-OH-DPAT. followed by electrophysiological experiments on four groups of rats induced by ventral hippocampal CA1-mPFC pathway and LTP, respectively before and after dosing and LTP before and after spontaneous LFPs. proceedings these two brain regions through numerical calculation and analysis of LFPs data acquisition, multi window were used to calculate the power spectrum energy spectrum estimation, PLV measurement of phase synchronization, EMA and CMI to measure the one-way coupling coefficient, PAC algorithm and multiple metric theta low frequency gamma (LG) and theta gamma (HG) and high frequency cross rhythms between Coupling strength.
The third part: 24 male SD rats, were randomly divided into normal control group (CTRL, n=12) and glioma model group (GLIO, n=12). The rats in group GLIO intracerebral injection of C6 glioma cells, CTRL group were injected with DMEM medium. Then the electrophysiological experiments were performed on two rats. Spontaneous LFPs. contralateral brain region of the dorsal hippocampus CA3 and CA1 recorded the tumor area through numerical calculation and analysis of LFPs data acquisition, respectively using PAC algorithms and proposed a new algorithm of CF-CMI and CF-EMA delay based on the measured cross coupling strength between the rhythm.
Result
1.CUS enhanced the power of mPFC, especially in Delta, theta and beta rhythm. But CUS rats mPFC sample entropy decreased significantly, memantine had no significant effect on power spectrum and sample entropy.
2. thalamic LDDM-mPFC in the coupling direction index theta rhythm D and one-way coupling strength index cLDDM, mPFC and iLDDM (EMA algorithm) and mPFC (CMI algorithm) was significantly reduced in CUS rats, and memantine after treatment phase coupling strength of the theta rhythm rebounded.
Phase coupling between CA1-mPFC in hippocampus of 3.CUS rats theta rhythm was inhibited, consistent with acute with dopamine D1 receptor antagonists and phase coupling changes after gamma rhythm by CUS was enhanced, and the acute administration of 5-HT1A receptor agonist after similar results. In addition, CUS also suppressed the intensity of PAC in CA1 area of hippocampus theta-HG rhythm the same changes in 5-HT1A receptor activation after acute.
4. in normal rats and CUS rats, the unidirectional phase coupling of CA1 theta mPFC in hippocampus increased significantly after induction of LTP, but increased significantly in CUS rats than in normal rats, which was consistent with the change of hippocampal CA1-mPFC synaptic plasticity in CUS rats.
5. the intensity of PAC between theta-LG rhythms in the hippocampal CA1 region was enhanced after the high frequency stimulation (60min), while the PAC intensity between the theta-HG rhythms increased only in the short time period (30min).
Cross coupled mode 6. CA3 region of the hippocampus in theta-LG rhythm between PAC, and the CA1 theta-LG and theta-HG two and PAC theta-LG PAC model, which is CA3 neurons on the conduction of rat.C6 glioma CA3 zone and CA3-CA1 theta-LG PAC of brain rhythms decreased, thus making CA1 theta-LG in the rhythm of PAC was also reduced.
7. improved and two new algorithms CF-CMI and CF-EMA delay parameters based on the application of PAC in brain regions showed that CA3-CA1 reached the maximum when the intensity of the delay Max peak gather at 20ms about the time scale, suggesting that PAC may delay is a measure of the true cross coupling strength in the CA3-CA1 network.
conclusion
1.CUS inhibits the unidirectional phase coupling intensity of LDDM-mPFC theta rhythm in thalamus, which is consistent with its inhibition on LTP in this neural pathway. It suggests that there is a connection between the theta rhythm phase coupling between thalamus and cortex and synaptic plasticity.
Theta single phase coupling 2.CUS rhythm in hippocampus of rats with CA1 and mPFC decreased significantly in the LTP before and after the increase, further confirms the phase coupling and synaptic plasticity in hippocampus CA1-mPFC theta rhythm. In the hippocampal CA1 region, theta-LG PAC and LTP, while theta-HG and PAC only short-term potentiation.
3.CUS inhibits the theta phase coupling between hippocampal CA1-mPFC, which is regulated by dopamine system. The promotion of gamma rhythm phase mismatch may be activated by 5-HT1A receptor. In addition, 5-HT1A receptor also regulates theta-HG PAC phenomenon in the hippocampus CA1 region.
The growth of 4.C6 glioma in the rat brain reduces the intensity of theta-LGPAC in the hippocampal CA3-CA1 neural network, which may be related to the impairment of cognitive function.
5. there is a time-delay PAC phenomenon in the CA3-CA1 brain region of the hippocampus, which can more accurately measure the cross coupling strength, and the time delay may be related to the synaptic transmission.
【學(xué)位授予單位】:南開大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2013
【分類號】:R749.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 譚來勛,孫圣剛,張雙國,吳旭,管強(qiáng);腦梗死大鼠運(yùn)動訓(xùn)練后星形膠質(zhì)細(xì)胞與突觸和運(yùn)動功能的變化[J];中華物理醫(yī)學(xué)與康復(fù)雜志;2005年10期
2 郭愛克;;從研究腦的發(fā)育和可塑性來揭示腦與智力和創(chuàng)造性的關(guān)系——“973”基礎(chǔ)前沿項(xiàng)目“腦發(fā)育和可塑性基礎(chǔ)研究”(2000~2005年)[J];生命科學(xué);2006年01期
3 張妍;唐民科;張均田;;樹突棘與學(xué)習(xí)記憶[J];國際神經(jīng)病學(xué)神經(jīng)外科學(xué)雜志;2006年04期
4 陳麗;蔣馬莉;韓太真;;誘導(dǎo)成年大鼠海馬CA1區(qū)長時程壓抑的強(qiáng)直刺激型式(英文)[J];生理學(xué)報;2006年03期
5 李玉紅;王德文;馬春虎;宋良文;劉紹晨;;電磁脈沖對大鼠海馬突觸可塑性相關(guān)蛋白表達(dá)的影響[J];解放軍預(yù)防醫(yī)學(xué)雜志;2006年05期
6 譚來勛;孫圣剛;;大鼠腦外傷灶周突觸和星形膠質(zhì)細(xì)胞的變化及對GM1的反應(yīng)[J];中國綜合臨床;2006年10期
7 田國紅;方明;黃流清;趙忠新;;神經(jīng)顆粒素在海人酸誘發(fā)癲vN大鼠皮質(zhì)及海馬中表達(dá)的研究[J];臨床神經(jīng)病學(xué)雜志;2006年06期
8 陳波;袁瓊蘭;;膠質(zhì)細(xì)胞源性神經(jīng)營養(yǎng)因子與突觸可塑性[J];四川解剖學(xué)雜志;2006年04期
9 孫珠蕾;袁瓊蘭;;人參皂甙Rb_1在突觸可塑性中的研究進(jìn)展[J];四川解剖學(xué)雜志;2007年01期
10 孫樹敏;劉皓;;神經(jīng)生長相關(guān)蛋白與突觸可塑性[J];天津醫(yī)科大學(xué)學(xué)報;2007年01期
相關(guān)會議論文 前10條
1 唐熊忻;樊仲維;邱基斯;;液晶空間光調(diào)制器Gamma曲線的調(diào)整方法及其對光束整形的影響[A];中國光學(xué)學(xué)會2011年學(xué)術(shù)大會摘要集[C];2011年
2 ;MGG1 Coding G-gamma Subunit is Required for Conidition,Fertility,Appressorium Formation and Pathogenicity in Magnaporthe oryzae[A];中國植物病理學(xué)會2010年學(xué)術(shù)年會論文集[C];2010年
3 莊樹林;張靖;張豐;張志生;劉維屏;;DDT-related pesticides induce conformational changes in the LBD of ER alpha and ERR gamma[A];第六屆全國環(huán)境化學(xué)大會暨環(huán)境科學(xué)儀器與分析儀器展覽會摘要集[C];2011年
4 P Trivedi;G Klein;;Immune evasion of human gamma-herpesviruses as strategy of viral tumorigenecity[A];新發(fā)和再發(fā)傳染病防治熱點(diǎn)研討會論文集[C];2010年
5 白金明;;BLAZAR的高態(tài)GAMMA射線輻射[A];中國天文學(xué)會星系分會2004年學(xué)術(shù)年會論文集[C];2004年
6 Michael Graner;;Evaluation of performance of an In-house Interfer on-gamma Elispot assay for Latent Tuberculosis in BCG Vaccinated individuals[A];全國第3屆中西醫(yī)結(jié)合傳染病學(xué)術(shù)會議暨中國中西醫(yī)結(jié)合學(xué)會傳染病專業(yè)委員會第2屆委員會議論文匯編[C];2010年
7 廖要明;張強(qiáng);陳德亮;;中國天氣發(fā)生器的降水模擬[A];推進(jìn)氣象科技創(chuàng)新加快氣象事業(yè)發(fā)展——中國氣象學(xué)會2004年年會論文集(下冊)[C];2004年
8 丁占民;鈄大雄;趙濤;馬磊;偉磊;;第三代Gamma釘治療股骨粗隆間骨折[A];浙江省醫(yī)學(xué)會骨科學(xué)分會30年慶典暨2011年浙江省骨科學(xué)學(xué)術(shù)年會論文匯編[C];2011年
9 吳白燕;梁紅業(yè);陳大方;揚(yáng)帆;汪六六;陳櫟;;新生兒EPHX139和GSTT基因多態(tài)性與低出生體重的關(guān)系研究[A];中國的遺傳學(xué)研究——中國遺傳學(xué)會第七次代表大會暨學(xué)術(shù)討論會論文摘要匯編[C];2003年
10 烏云塔娜;李洪果;包梅榮;譚曉風(fēng);;中國梨新SFBB-gamma基因的鑒定及序列分析[A];梨科研與生產(chǎn)進(jìn)展(五)[C];2011年
相關(guān)重要報紙文章 前10條
1 本報特約撰稿人 盧作勇;生物技術(shù)涌向制藥業(yè)[N];醫(yī)藥經(jīng)濟(jì)報;2003年
2 元富期經(jīng) 王永慶 元富(香港)證券上海 詹瑤 王建華;風(fēng)險監(jiān)管之意涵及其重要性[N];證券日報;2004年
3 黃永才;粉料包裝充填新技術(shù)[N];中國包裝報;2003年
4 本報記者 王軍;國產(chǎn)疫苗的“起跑線”?[N];醫(yī)藥經(jīng)濟(jì)報;2002年
5 本報記者 余波;缺少大副的航母,能否順利遠(yuǎn)航?[N];計(jì)算機(jī)世界;2002年
6 ;LG CU8280 Vs.普天三洋SCP-550[N];計(jì)算機(jī)世界;2003年
7 本報記者 趙云;起亞整容[N];華夏時報;2010年
8 賽迪翻譯;一個領(lǐng)域三個霸 IT流行“以大為美”[N];中國計(jì)算機(jī)報;2002年
9 江蘇 王志軍;免費(fèi)的函數(shù)圖像工具——MathGV[N];電腦報;2002年
10 ;NEC:商用等離子顯示器[N];中國計(jì)算機(jī)報;2004年
相關(guān)博士學(xué)位論文 前10條
1 鄭晨光;大鼠theta和gamma神經(jīng)振蕩參與調(diào)節(jié)突觸可塑性及潛在機(jī)制探究[D];南開大學(xué);2013年
2 張櫨;海馬CA1區(qū)theta驅(qū)動細(xì)胞與theta脈沖細(xì)胞[D];華東師范大學(xué);2011年
3 朱軍明;Theta函數(shù)恒等式[D];華東師范大學(xué);2011年
4 丁宇;經(jīng)Gamma射線照射去細(xì)胞化同種異體椎間盤:體外與體內(nèi)實(shí)驗(yàn)研究[D];第四軍醫(yī)大學(xué);2013年
5 吳頤;過氧化物酶體增殖物激活受體gamma羅格列酮在蛛網(wǎng)膜下腔出血后腦血管痙攣中的作用及機(jī)制研究[D];南京大學(xué);2011年
6 趙鳳珍;組合恒等式與發(fā)生函數(shù)方法[D];大連理工大學(xué);2004年
7 李朝旭;γδT細(xì)胞免疫治療骨肉瘤的臨床前研究[D];浙江大學(xué);2012年
8 付振宇;Gamma-氨基丁酸受體激動劑Baclofen在嗎啡依賴中的作用及其作用機(jī)制[D];吉林大學(xué);2012年
9 劉富鑫;慢性嗎啡處理過程中小鼠海馬CA1神經(jīng)信息編碼的改變[D];浙江大學(xué);2010年
10 李筱穎;胃痛PRO計(jì)算機(jī)自適應(yīng)試驗(yàn)的初步構(gòu)建研究[D];廣州中醫(yī)藥大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 林昊;廣義Theta函數(shù)的變換公式[D];北京大學(xué);2001年
2 蔣科杰;對Hodgkin-Huxley神經(jīng)元網(wǎng)絡(luò)的theta嵌套的gamma節(jié)律的數(shù)值研究[D];浙江師范大學(xué);2011年
3 吳云天;大鼠海馬CA1區(qū)位置細(xì)胞的Theta波相位進(jìn)動[D];華東師范大學(xué);2013年
4 陳小剛;癲癇尖波對Theta節(jié)律動態(tài)特性影響的研究[D];河北工業(yè)大學(xué);2011年
5 蘇丹;一類八個交叉點(diǎn)的Theta曲線的分類方法[D];大連理工大學(xué);2013年
6 王靜怡;小鼠內(nèi)側(cè)中隔神經(jīng)元放電模式與海馬Theta節(jié)律的關(guān)系[D];華東師范大學(xué);2011年
7 楊東;大鼠內(nèi)側(cè)隔核注射淀粉樣β蛋白影響海馬theta節(jié)律和長時程增強(qiáng)的在體電生理研究[D];山西醫(yī)科大學(xué);2011年
8 王守鏡;情緒圖片在抑郁癥病人與正常人中誘發(fā)的Gamma波活動研究[D];電子科技大學(xué);2012年
9 田清華;動態(tài)GAMMA調(diào)整在節(jié)能型LED液晶電視中的應(yīng)用研究與實(shí)現(xiàn)[D];中國海洋大學(xué);2012年
10 吳澤為;情緒事件的腦電圖非線性動態(tài)分析的研究[D];大連交通大學(xué);2012年
,本文編號:1508401
本文鏈接:http://sikaile.net/yixuelunwen/jsb/1508401.html