天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于三維有限元方法探索ACL斷裂后脛股關(guān)節(jié)軌跡異常對(duì)半月板和軟骨應(yīng)力分布的影響

發(fā)布時(shí)間:2018-09-11 21:25
【摘要】:研究背景 前交叉韌帶(anterior cruciate ligament,ACL)斷裂可導(dǎo)致膝關(guān)節(jié)運(yùn)動(dòng)不穩(wěn),引起脛骨與股骨之間的位移和旋轉(zhuǎn)異常。脛骨與股骨之間的運(yùn)動(dòng)關(guān)系比較復(fù)雜,包括6個(gè)自由度的位移和旋轉(zhuǎn),以及股骨內(nèi)外側(cè)髁的前后、內(nèi)外和遠(yuǎn)近位移。ACL是維持膝關(guān)節(jié)正常活動(dòng)的關(guān)鍵紐帶。當(dāng)ACL斷裂后,膝關(guān)節(jié)在屈曲過程中會(huì)出現(xiàn)脛骨前移、內(nèi)移和內(nèi)旋增加。以往許多關(guān)于ACL斷裂后膝關(guān)節(jié)運(yùn)動(dòng)的研究,把股骨的運(yùn)動(dòng)作為一個(gè)整體來看待,而忽略了內(nèi)側(cè)髁和外側(cè)髁的運(yùn)動(dòng)。因此,ACL斷裂對(duì)內(nèi)外側(cè)髁運(yùn)動(dòng)的影響在目前仍認(rèn)識(shí)不足,表現(xiàn)在ACL斷裂對(duì)內(nèi)外側(cè)髁前后位移的影響仍存在分歧,而且尚未有文獻(xiàn)報(bào)道ACL斷裂對(duì)內(nèi)外側(cè)髁內(nèi)外和遠(yuǎn)近位移的影響。全面地了解ACL斷裂后脛股關(guān)節(jié)6個(gè)自由度運(yùn)動(dòng)以及股骨內(nèi)外側(cè)髁運(yùn)動(dòng)的異常變化,將有助于進(jìn)一步認(rèn)識(shí)ACL斷裂對(duì)股骨運(yùn)動(dòng)產(chǎn)生的影響,有助于改進(jìn)ACL重建術(shù)的外科技術(shù)。 ACL斷裂引起的脛股關(guān)節(jié)運(yùn)動(dòng)軌跡改變可進(jìn)一步引發(fā)半月板和軟骨繼發(fā)性損傷。隨著ACL斷裂后脛股關(guān)節(jié)位移和旋轉(zhuǎn)的改變,脛股軟骨接觸點(diǎn)在屈曲過程中出現(xiàn)后移和外移增加,從而引起關(guān)節(jié)負(fù)荷從負(fù)重區(qū)轉(zhuǎn)移到非負(fù)重區(qū),造成非負(fù)重區(qū)軟骨應(yīng)力增加。此外,ACL斷裂后內(nèi)側(cè)半月板所承受的應(yīng)力也明顯增加?梢姡珹CL斷裂會(huì)引起關(guān)節(jié)間應(yīng)力重新分配,容易導(dǎo)致半月板和軟骨繼發(fā)性損傷。既往的研究很少對(duì)ACL斷裂后半月板(前角、體部和后角)和軟骨(脛骨軟骨和股骨軟骨)各部分的應(yīng)力情況進(jìn)行細(xì)分觀察。臨床觀察顯示,ACL斷裂對(duì)半月板和軟骨各部分的影響并不完全相同。因此,全面地了解ACL斷裂后半月板和軟骨各部分異常的應(yīng)力分布,將有助于了解半月板和軟骨上出現(xiàn)繼發(fā)性損傷的好發(fā)部位以及了解潛在的損傷機(jī)制。 有限元分析法是獲得膝關(guān)節(jié)半月板和軟骨上應(yīng)力分布的有效方法。該方法以研究對(duì)象的幾何結(jié)構(gòu)為基礎(chǔ)構(gòu)建生物力學(xué)模型,賦予恰當(dāng)?shù)牟牧蠈傩院螅虞d負(fù)荷和邊界條件,對(duì)研究對(duì)象進(jìn)行受力分析和運(yùn)動(dòng)分析。有限元分析法可以克服體外實(shí)驗(yàn)中標(biāo)本不易獲得、標(biāo)本不能重復(fù)使用等缺點(diǎn),而且能獲得體外實(shí)驗(yàn)不易獲得的數(shù)據(jù),如韌帶張力,關(guān)節(jié)間的接觸力、接觸面積,半月板和軟骨的應(yīng)力、應(yīng)變等。有限元分析法已成為研究關(guān)節(jié)生物力學(xué)的可靠手段。 在本文中,我們應(yīng)用雙平面X光技術(shù)全面地測(cè)量直立負(fù)重屈曲過程中,脛股關(guān)節(jié)6個(gè)自由度的運(yùn)動(dòng)以及股骨內(nèi)外側(cè)髁前后、內(nèi)外和遠(yuǎn)近位移。直立負(fù)重比非負(fù)重能更好地反映和評(píng)估ACL斷裂病理狀態(tài)下的脛股關(guān)節(jié)運(yùn)動(dòng)。本文先建立應(yīng)用該技術(shù)測(cè)量脛股關(guān)節(jié)運(yùn)動(dòng)的方法,以及驗(yàn)證該技術(shù)測(cè)量的準(zhǔn)確性;接著,我們使用該技術(shù)全面地測(cè)量并分析膝關(guān)節(jié)在直立負(fù)重屈曲過程中,ACL斷裂后脛股關(guān)節(jié)位移和旋轉(zhuǎn)的變化;然后,我們把ACL斷裂后脛股關(guān)節(jié)運(yùn)動(dòng)軌跡改變的數(shù)據(jù)應(yīng)用到有限元模型中,模擬分析ACL斷裂后內(nèi)外側(cè)半月板前角、體部和后角,以及內(nèi)外側(cè)脛骨軟骨和股骨軟骨上應(yīng)力分布的變化。 研究方法 1.雙平面X光技術(shù)測(cè)量脛股關(guān)節(jié)位移和旋轉(zhuǎn)方法的建立與體外實(shí)驗(yàn)的驗(yàn)證。使用兩臺(tái)X光機(jī)從正交方向同時(shí)采集膝關(guān)節(jié)6個(gè)屈曲位置的雙平面X光影像,CT掃描伸直位的膝關(guān)節(jié)并重建成脛股關(guān)節(jié)三維模型,然后用三維模型與雙平面X光影像進(jìn)行圖像配準(zhǔn),獲得6個(gè)屈曲位置的脛股關(guān)節(jié)模型,通過建立在模型上的關(guān)節(jié)坐標(biāo)系測(cè)量出脛股關(guān)節(jié)在屈曲過程中的位移和旋轉(zhuǎn)。驗(yàn)證過程如下:CT直接掃描處于6個(gè)屈曲位置的同一個(gè)膝關(guān)節(jié),并重建成6個(gè)位置的脛股關(guān)節(jié)模型,通過同一個(gè)坐標(biāo)系測(cè)量出脛股關(guān)節(jié)的位移和旋轉(zhuǎn),并以此運(yùn)動(dòng)數(shù)據(jù)作為參考標(biāo)準(zhǔn),考查雙平面X光技術(shù)所獲得的脛股關(guān)節(jié)運(yùn)動(dòng)數(shù)據(jù)的準(zhǔn)確性。 2.測(cè)量ACL斷裂后直立負(fù)重屈曲過程中脛股關(guān)節(jié)的位移和旋轉(zhuǎn)。應(yīng)用雙平面X光技術(shù),測(cè)量單側(cè)ACL斷裂患者從伸直位到120°屈曲的弓步下蹲過程中,ACL斷裂膝和正常對(duì)側(cè)膝的脛股關(guān)節(jié)位移和旋轉(zhuǎn),然后對(duì)比分析患膝與健膝之間脛股關(guān)節(jié)位移和旋轉(zhuǎn)的差異,獲得ACL斷裂后脛股關(guān)節(jié)運(yùn)動(dòng)軌跡改變的數(shù)據(jù)。 3.探討ACL斷裂對(duì)半月板和軟骨應(yīng)力分布的影響。應(yīng)用有限元分析法計(jì)算出ACL斷裂膝和正常膝中半月板和軟骨各部分上的應(yīng)力分布。構(gòu)建脛股關(guān)節(jié)有限元模型,并對(duì)此模型的有效性進(jìn)行驗(yàn)證。創(chuàng)建ACL斷裂有限元模型,,把ACL斷裂后脛股關(guān)節(jié)運(yùn)動(dòng)軌跡改變的數(shù)據(jù)作為邊界條件應(yīng)用到該模型中。計(jì)算出伸直位、15°和30°屈曲時(shí)ACL斷裂模型和正常模型中半月板和軟骨上的應(yīng)力分布,并對(duì)比分析兩個(gè)模型之間半月板和軟骨各部分上應(yīng)力的差異。 研究結(jié)果 1.雙平面X光技術(shù)能較準(zhǔn)確地測(cè)量脛股關(guān)節(jié)的位移和旋轉(zhuǎn)。該技術(shù)的精確度在前后、內(nèi)外和遠(yuǎn)近位移上分別為0.88mm、0.65mm和0.61mm,在屈伸、內(nèi)外旋轉(zhuǎn)和內(nèi)外翻轉(zhuǎn)上分別為1.03°、1.09°和0.76°。 2.膝關(guān)節(jié)在下蹲屈曲過程中,在伸直位和15°屈曲時(shí),ACL斷裂后股骨外側(cè)髁的后移增加,伴隨著股骨的后移和外旋增加。而對(duì)于內(nèi)側(cè)髁的前后位移,內(nèi)外側(cè)髁和股骨的內(nèi)外、遠(yuǎn)近位移,以及股骨的內(nèi)外翻轉(zhuǎn)在ACL斷裂后均與正常膝相似。 3.膝關(guān)節(jié)從15°到60°的下蹲屈曲階段中,ACL斷裂后外側(cè)髁后移的幅度顯著減少,這使得股骨后移和外旋的幅度也隨之減少。而對(duì)于內(nèi)側(cè)髁前后移動(dòng)的幅度,內(nèi)外側(cè)髁和股骨內(nèi)外、遠(yuǎn)近移動(dòng)的幅度,以及股骨內(nèi)外翻轉(zhuǎn)的幅度在ACL斷裂后均與正常膝相似。 4.在伸直位到30°屈曲之間,ACL斷裂后內(nèi)外側(cè)半月板上的應(yīng)力均增加。在伸直位時(shí),ACL斷裂造成內(nèi)側(cè)半月板前角的應(yīng)力增加明顯,外側(cè)半月板前角和體部的應(yīng)力也有所增加;在15°和30°屈曲時(shí),ACL斷裂后內(nèi)側(cè)半月板后角的應(yīng)力增加明顯,而外側(cè)半月板各部位的應(yīng)力增加不明顯。 5. ACL斷裂后內(nèi)外側(cè)脛股軟骨在伸直位到30°屈曲之間所承受的應(yīng)力均增加,其中,內(nèi)側(cè)股骨軟骨的應(yīng)力增幅隨著屈曲的增加而逐漸升高,內(nèi)側(cè)脛骨軟骨的應(yīng)力增幅隨著屈曲逐漸下降,外側(cè)間室中脛股軟骨的應(yīng)力增幅比較小。 研究結(jié)論 1.建立了雙平面X光技術(shù)全面測(cè)量脛股關(guān)節(jié)位移和旋轉(zhuǎn)的方法,經(jīng)過驗(yàn)證,該技術(shù)有效可行。 2.在膝關(guān)節(jié)從伸直位到120°的下蹲屈曲過程中,ACL斷裂主要改變了股骨外側(cè)髁的前后運(yùn)動(dòng),引起外側(cè)髁在早期屈曲范圍內(nèi)向后松動(dòng),而且造成外側(cè)髁在屈曲過程的中間階段向后移動(dòng)的幅度顯著少于正常膝。 3.在膝關(guān)節(jié)從伸直位到30°屈曲之間,ACL斷裂主要改變了脛股關(guān)節(jié)內(nèi)側(cè)間室的應(yīng)力分布,引起內(nèi)側(cè)半月板前角和后角的應(yīng)力分別在伸直位和屈曲位時(shí)明顯大于正常膝,并造成內(nèi)側(cè)股骨軟骨應(yīng)力的增加幅度隨著屈曲的加深不斷升高。
[Abstract]:Research background
Anterior cruciate ligament (ACL) rupture can lead to instability of knee joint motion, resulting in displacement and rotation abnormalities between tibia and femur. When ACL ruptures, the tibia moves forward, moves inward, and turns inward. Many previous studies on the motion of the knee joint after ACL ruptures looked at the femoral movement as a whole, but ignored the movement of the medial and lateral condyles. The influence of ACL rupture on the anterior and posterior displacement of the medial and lateral condyles is still poorly understood, and the effect of ACL rupture on the anterior and posterior displacement of the medial and lateral condyles has not been reported in literature. To further understand the effect of ACL rupture on femoral movement is helpful to improve the surgical technique of ACL reconstruction.
With the change of displacement and rotation of tibiofemoral joint after ACL rupture, the tibiofemoral cartilage contact points appear to move back and out during the flexion process, resulting in the transfer of joint load from the load-bearing area to the non-load-bearing area, resulting in the non-load-bearing area. In addition, the stress on the medial meniscus increased significantly after ACL rupture. It is evident that ACL rupture can lead to stress redistribution between joints and secondary injury to the meniscus and cartilage. Previous studies have rarely studied the posterior meniscus (anterior horn, body and posterior horn) and cartilage (tibial cartilage and femoral cartilage) after ACL rupture. Clinical observation showed that the effects of ACL rupture on the meniscus and cartilage were not identical. Therefore, a comprehensive understanding of the abnormal stress distribution in the meniscus and cartilage after ACL rupture will be helpful to understand the predisposing sites of secondary injury on the meniscus and cartilage and the potential of secondary injury. Damage mechanism.
Finite element analysis is an effective method to obtain the stress distribution on the meniscus and cartilage of the knee joint.The biomechanical model is constructed on the basis of the geometric structure of the research object.After giving proper material attributes,loading loads and boundary conditions,the stress analysis and motion analysis of the research object are carried out.Finite element analysis can overcome the body. In the external experiment, the specimen is not easy to obtain and can not be reused, and the data which is not easy to obtain in the external experiment, such as ligament tension, joint contact force, contact area, meniscus and cartilage stress, strain and so on. The finite element analysis method has become a reliable means to study joint biomechanics.
In this paper, we used biplane X-ray technique to measure the tibiofemoral joint motion with six degrees of freedom during orthostatic weight-bearing flexion and the displacement of the femoral medial and lateral condyles. Then, we use this technique to measure and analyze the tibiofemoral joint displacement and rotation after ACL rupture during orthostatic load-bearing flexion. Then, we apply the data of tibiofemoral joint motion trajectory after ACL rupture to the measurement. In the finite element model, the changes of stress distribution in the anterior horn, body and posterior horn of the medial and lateral meniscus, tibial cartilage and femoral cartilage after ACL rupture were simulated and analyzed.
research method
1. Establishment of biplane X-ray technique for measuring tibiofemoral joint displacement and rotation and validation of in vitro experiments. Biplane X-ray images of six knee flexion positions were taken simultaneously from orthogonal directions by two X-ray machines. The knee joints in straight position were scanned by CT and reconstructed into three-dimensional models of tibiofemoral joint. After image registration, the tibiofemoral joint model with six flexion positions was obtained. The displacement and rotation of the tibiofemoral joint during flexion were measured by the joint coordinate system based on the model. The displacement and rotation of tibiofemoral joints were measured in each coordinate system, and the accuracy of tibiofemoral joint motion data obtained by biplane X-ray technique was examined.
2. Measure the displacement and rotation of tibiofemoral joints during orthostatic weight-bearing flexion after ACL rupture. Measure the displacement and rotation of tibiofemoral joints between ACL ruptured knees and normal contralateral knees during bowing and squatting from extension to 120 degree flexion with biplane X-ray technique. The difference of movement and rotation is obtained from the data of the movement of the tibiofemoral joint after ACL fracture.
3. Discuss the influence of ACL fracture on stress distribution of meniscus and cartilage. Calculate the stress distribution of meniscus and cartilage in ACL fracture knee and normal knee by finite element analysis. Construct the finite element model of tibiofemoral joint, and verify the validity of the model. The data of trajectory changes are applied to the model as boundary conditions. Stress distributions on the meniscus and cartilage are calculated in the ACL fracture model and the normal model at flexion of 15 and 30 degrees, and the differences of stresses on the meniscus and cartilage between the two models are compared and analyzed.
Research results
1. Biplane X-ray technique can measure the displacement and rotation of tibiofemoral joints more accurately. The accuracy of this technique is 0.88 mm, 0.65 mm and 0.61 mm respectively in internal and external displacement, 1.03 degrees in flexion and extension, 1.09 degrees in internal and external rotation and 0.76 degrees in internal and external inversion.
2. During squatting and flexion, the posterior displacement of the lateral condyle of the femur increases with the posterior displacement and lateral rotation of the femur after ACL rupture, while the anterior and posterior displacement of the medial condyle, the medial and lateral displacement of the medial condyle, the distal and near displacement of the medial and lateral condyle, and the inversion of the femur after ACL rupture are similar to those of the normal knee.
3. During knee flexion from 15 degrees to 60 degrees, the lateral condylar posterior displacement after ACL rupture was significantly reduced, which reduced the femoral posterior displacement and lateral rotation. Normal knees are similar.
4. The stress on the medial and lateral meniscus increases after ACL rupture between extension and 30 degree buckling. In extension, ACL rupture results in a significant increase in the stress in the anterior horn of the medial meniscus, and the stress in the anterior horn and body of the lateral meniscus also increases. The stress on the lateral meniscus is not obvious.
5. The stress of medial and lateral tibiofemoral cartilage increased with the increase of flexion, the stress of medial tibiofemoral cartilage decreased with the increase of flexion, and the stress of medial tibiofemoral cartilage decreased with the increase of flexion.
research conclusion
1. The method of measuring the displacement and rotation of tibiofemoral joint by biplane X-ray technique is established. It is proved that the technique is effective and feasible.
2. During knee flexion from extension to 120 degrees, ACL rupture mainly changes the anterior and posterior movement of the lateral condyle of the femur, causing the lateral condyle to loosen backwards in the early flexion range, and causing the lateral condyle to move backwards in the middle of the flexion process significantly less than the normal knee.
3. Between extension and flexion of the knee joint, ACL rupture mainly changes the stress distribution of the tibiofemoral medial compartment, causing the stress of the anterior and posterior horns of the medial meniscus to be significantly greater than that of the normal knee in the extension and flexion positions, and causing the stress of the medial femoral cartilage to increase with the deepening of flexion.
【學(xué)位授予單位】:第三軍醫(yī)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2013
【分類號(hào)】:R686.5

【參考文獻(xiàn)】

相關(guān)期刊論文 前4條

1 姚杰;樊瑜波;張明;李德玉;宮赫;;前交叉韌帶損傷的繼發(fā)性生物力學(xué)影響[J];力學(xué)學(xué)報(bào);2010年01期

2 汪田福;郝智秀;高相飛;;前交叉韌帶生物力學(xué)特性及其損傷對(duì)膝關(guān)節(jié)穩(wěn)定性的影響[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年07期

3 馮華;張輝;郭鐵能;王滿宜;;膝關(guān)節(jié)前十字韌帶切斷對(duì)內(nèi)側(cè)半月板后角應(yīng)力的影響[J];中華骨科雜志;2006年07期

4 王巖,周飛虎,周勇剛,崔建;國(guó)人正常膝關(guān)節(jié)三維幾何形態(tài)測(cè)量及相關(guān)研究[J];中國(guó)矯形外科雜志;2004年08期



本文編號(hào):2237889

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/yixuelunwen/jjyx/2237889.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶51edb***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
国产福利在线播放麻豆| 欧美日韩国产综合在线| 精品偷拍一区二区三区| 色老汉在线视频免费亚欧| 国内精品一区二区欧美| 免费大片黄在线观看国语| 精品午夜福利无人区乱码| 国产精品一区二区不卡中文| 国产一区二区久久综合| 午夜亚洲少妇福利诱惑| 欧美一区二区在线日韩| 国产又粗又猛又黄又爽视频免费| 粗暴蹂躏中文一区二区三区| 高清在线精品一区二区| 色婷婷人妻av毛片一区二区三区| 久草视频这里只是精品| 日韩欧美精品一区二区三区| 亚洲一区二区三区精选| 高清亚洲精品中文字幕乱码| 免费亚洲黄色在线观看| 国产黄色高清内射熟女视频| 亚洲中文字幕视频一区二区| 亚洲中文字幕高清视频在线观看| 亚洲做性视频在线播放| 国产熟女一区二区三区四区| 夜夜嗨激情五月天精品| 亚洲av专区在线观看| 国产精品美女午夜福利| 国产精品亚洲二区三区| 福利一区二区视频在线| 美女激情免费在线观看| 国产传媒高清视频在线| 色婷婷视频免费在线观看| 中文人妻精品一区二区三区四区| 国产一区二区三区口爆在线| 午夜国产精品国自产拍av| 少妇熟女精品一区二区三区| 精品综合欧美一区二区三区| 偷拍美女洗澡免费视频| 国产精品亚洲综合色区韩国| 久久99国产精品果冻传媒|