基于CT數(shù)據(jù)顱骨有限元模型的建立及枕部墜落傷和打擊傷應(yīng)力分析的研究
本文選題:顱骨 + 有限元分析; 參考:《河北醫(yī)科大學(xué)》2017年碩士論文
【摘要】:目的:顱腦是人體最重要的生命中樞,也是損傷后致死率和致殘率最高的器官。在法醫(yī)傷害案件中,頭部常是主要打擊的目標(biāo),因此對(duì)顱骨墜落傷和打擊傷的鑒別,也一直是法醫(yī)檢案鑒定研究的重點(diǎn)和難點(diǎn)。本研究基于正常人體頭部CT數(shù)據(jù)對(duì)顱骨進(jìn)行三維重建并生成顱骨有限元模型。用該經(jīng)過有效性驗(yàn)證后的有限元模型進(jìn)行枕部墜落傷和打擊傷模擬和力學(xué)分析。以數(shù)字技術(shù)為顱骨損傷中墜落傷和打擊傷的鑒別提供理論參考。方法:1選取一名成年健康女性作為模擬對(duì)象,利用螺旋CT采集顱骨數(shù)據(jù)。2利用Mimics 15.0軟件和Geomagic Studio 12.0軟件建立顱骨三維幾何模型3在Mimics 15.0的3-matic 7.0中和ANSYS Workbench 14.0的Explict Dynamics(LS-DYNA Export)模塊構(gòu)建顱骨有限元模型。4與Yoganandan尸體實(shí)驗(yàn)進(jìn)行對(duì)比來驗(yàn)證模型有效性。5在ANSYS Workbench 14.0和LS-DYNA 971軟件中模擬5.1 m/s、6m/s、10 m/s的速度下枕部墜落傷和打擊傷。分析這兩種工況應(yīng)力傳播途徑,比較應(yīng)力分布情況、接觸力-時(shí)間曲線、沖擊與對(duì)沖部位壓力變化。結(jié)果:1成功地建立了除下頜骨、舌骨以外的顱骨三維幾何模型。2在Mimics 15.0的3-matic模塊中和ANSYS Workbench 14.0中生成了顱骨有限元模型。其中包括枕骨密質(zhì)1個(gè)、枕骨松質(zhì)2個(gè)、其余顱骨密質(zhì)1個(gè)和其余顱骨松質(zhì)10個(gè),總節(jié)點(diǎn)數(shù)為238009個(gè),總單元數(shù)為942663個(gè)。3依據(jù)Yoganandan的尸體實(shí)驗(yàn)對(duì)本研究所建立的顱骨有限元模型進(jìn)行驗(yàn)證。尸體實(shí)驗(yàn)峰值接觸力為14034N,本驗(yàn)證實(shí)驗(yàn)峰值接觸力為13323N,比文獻(xiàn)實(shí)驗(yàn)小了約5%。當(dāng)接觸力達(dá)到峰值后,曲線有下降趨勢(shì)表明顱骨發(fā)生了塑性屈服。本研究得出的接觸力-位移曲線與參考的驗(yàn)證實(shí)驗(yàn)測得的曲線在趨勢(shì)上基本保持了相似性,證明了本實(shí)驗(yàn)構(gòu)建的有限元模型的有效性,可以進(jìn)一步進(jìn)行顱骨損傷的生物力學(xué)分析研究。4聯(lián)合ANSYS Workbench 14.0和LS-DYNA 971軟件,模擬了在不同速度下顱骨枕部的墜落傷,同時(shí)輸出了等效應(yīng)力(Von Mises Stress)分布云圖。由應(yīng)力云圖可知,枕部墜落傷時(shí)應(yīng)力主要傳播途徑為枕部-顱底-額部;以5.1 m/s速度碰撞時(shí),應(yīng)力除主要集中于枕骨中部外,還在枕骨周圍骨縫、枕內(nèi)隆凸、枕骨大孔、枕骨基底部、頸靜脈孔、乙狀竇溝、內(nèi)耳門、顳骨巖部尖端、破裂孔、卵圓孔、垂體窩、額骨眶板、翼點(diǎn)附近、顴弓、眶下裂及上頜骨處形成應(yīng)力集中區(qū);以6 m/s速度碰撞時(shí),應(yīng)力除分布于上述部位以外,還波及到視神經(jīng)管和蝶骨小翼;以10m/s速度碰撞時(shí),應(yīng)力集中部位又增加了篩板以及額骨眉間部位。同時(shí)比較枕部在不同碰撞速度下接觸力-時(shí)間曲線可得知:隨著墜落高度升高,碰撞速度越大,接觸面的峰值接觸力越大,達(dá)到峰值接觸力的時(shí)間越早。額部和枕部壓力曲線表明:沖擊處的枕部壓力為正值,而對(duì)沖處的壓力為正負(fù)值交替變化。5聯(lián)合ANSYS Workbench 14.0和LS-DYNA 971軟件,模擬了在不同速度下顱骨枕部的錘子打擊傷,輸出了等效應(yīng)力(Von Mises Stress)分布云圖。由應(yīng)力云圖可知,打擊頭顱枕骨中部時(shí),應(yīng)力也是主要沿著枕部-顱底-額部途徑進(jìn)行傳播;以5.1 m/s速度打擊時(shí),應(yīng)力集中部位出現(xiàn)在枕骨中部,枕骨周圍骨縫、枕內(nèi)隆凸、枕骨大孔、枕骨基底部、頸靜脈孔、乙狀竇溝、內(nèi)耳門、顳骨巖部尖端、破裂孔、卵圓孔、垂體窩、額骨眶板、翼點(diǎn)附近、顴弓、眶下裂及上頜骨處;以6 m/s速度打擊時(shí),應(yīng)力集中部位除上述部位以外,還波及到視神經(jīng)管;以10 m/s速度碰撞時(shí),應(yīng)力集中部位也增加了篩板以及額骨眉間部位。但應(yīng)力集中范圍比同速度墜落的小。比較打擊部位在不同速度下接觸力-時(shí)間曲線,表明打擊速度越大,則接觸面的峰值接觸力越大,達(dá)到峰值接觸力的時(shí)間越早。額部和枕部壓力曲線表明:沖擊處的枕部壓力為正值,而對(duì)沖處的額部壓力為正負(fù)值交替變化。6同速度下,兩種不同損傷的應(yīng)力云圖比較顯示:墜落傷應(yīng)力集中區(qū)域比打擊傷更廣;接觸力-時(shí)間曲線比較顯示:墜落傷峰值接觸力比打擊傷大;沖擊處的枕部壓力比較顯示:墜落傷和打擊傷所造成的枕部壓力差別不大;對(duì)沖處的額部壓力比較顯示:墜落傷時(shí)額部正負(fù)壓變化幅度比打擊傷更大。結(jié)論:1基于正常人頭顱CT數(shù)據(jù),應(yīng)用相應(yīng)軟件重建出解剖結(jié)構(gòu)相似度高的人體顱骨三維幾何模型和有限元模型。2與國外經(jīng)典的尸體頭部損傷實(shí)驗(yàn)進(jìn)行比較,驗(yàn)證了本研究模型的有效性,可進(jìn)行生物力學(xué)仿真模擬。3成功模擬了顱骨枕部的墜落傷和暴力打擊傷并比較了兩種損傷生物力學(xué)指標(biāo)?芍砉侵胁渴芰r(shí)應(yīng)力傳播主要方向?yàn)檎聿?顱底-額部。顱骨應(yīng)力集中區(qū)域與臨床上顱底骨折的好發(fā)部位一致。同工況下,速度越大,越易發(fā)生顱骨損傷。對(duì)沖性額部骨折的原因可能是由于正負(fù)壓交替所致的疲勞性骨折。4同速度下,墜落造成的減速性顱骨損傷比無墊襯暴力打擊造成的顱骨加速性損傷應(yīng)力分布范圍更廣、后果更嚴(yán)重、更易發(fā)生對(duì)沖性骨折。
[Abstract]:Objective: the brain is the most important life center of human body after injury, and mortality rate and disability rate highest organ. In forensic injury cases, the head is often the main target of attack, so the skull fall injury and injury against discrimination, also has been the focus and difficulty of forensic inspection case identification. This study is based on the normal human head CT data reconstruction of skull and skull formation. The finite element model through finite element validation model after analysis and Simulation of mechanical injury against injury and fall to digital technology. The occipital skull injury in fall injury and identification of combat injuries and provide a theoretical reference. Methods: 1 selected a healthy adult female as the simulation object, using spiral CT acquisition skull data.2 using Mimics 15 and Geomagic Studio 12 software to establish the three-dimensional geometric model of the skull in 3 Mimics 15 3-matic 7 Workbench 14 and ANSYS Explict Dynamics (LS-DYNA Export) module to build the finite element model of.4 and Yoganandan of skull cadaver experiment validated the effectiveness of the.5 model in ANSYS Workbench 14 and LS-DYNA 971 software in the simulation of 5.1 m/s, 6m/s 10, m/s speed occipitalia falling injury and combat injuries. Analysis of these two conditions should be comparison of force transmission, stress distribution, contact force time curve, change of pressure impact and hedge positions. Results: 1 successfully established in the mandible,.2 three-dimensional geometric model of the skull hyoid outside in the Mimics 15 3-matic module and ANSYS Workbench 14 are generated in the skull. The finite element model including the occipital cortical 1, the remaining 2 cancellous and cortical skull 1 and the rest of the skull cancellous 10, the total number of nodes was 238009, the total number of units for 942663.3 according to Yoganandan's body experiment in this study The skull established finite element model is verified. The body experiment peak contact force is 14034N, the experiment of peak contact force is 13323N, than the experimental small when the contact force is about 5%. after the peak, the curve downward trend shows that the skull occurred plastic yield. Experimental verification of the contact force - displacement curve with reference to the measured curve in the trend to maintain the basic similarity, proves the validity of the finite element model of the constructed, can further biomechanical analysis of skull injury.4 combined with ANSYS Workbench 14 and LS-DYNA 971 software to simulate the skull at different speeds occipital falls, while the output. The equivalent stress (Von Mises Stress) distribution. By the stress nephogram of the falling occipital stress mainly transmitted occipital skull base - forehead; at a speed of 5.1 m/s collision, in addition to the main stress To focus on the central, still occipital sutures, internal occipital protuberance, foramen magnum, basilar part of occipital bone, jugular foramen, sigmoid sinus, internal auditory meatus, petrous bone, fracture hole, foramen ovale, pituitary fossa, orbital plate frontal, pterional near the zygomatic arch, inferior orbital fissure jaw and the formation of stress concentration area; at a speed of 6 m/s collision, in addition to stress distributed in the area outside, but also affects the optic canal and the sphenoids; at the speed of 10m/s collision, stress concentration increased and the frontal glabellar area. At the same time plate is occipital in different collision speeds contact force time curve can be found: the falling height increased with impact velocity increasing, the contact surface of the peak contact force increases, reaches the peak contact force earlier. Frontal and occipital pressure curve showed that the occipital pressure shock is positive, and the hedge at a pressure of alternating positive and negative value of.5 Combined with ANSYS Workbench 14 and LS-DYNA 971 software to simulate the skull at different speeds occipitalia hammer against injury, the output of the equivalent stress (Von Mises Stress) distribution. By the stress nephogram of the blow head occipital central, stress is mainly along the occipital skull bottom - - forehead way of communication at a speed of 5.1 m/s; blow when the stress concentration appears in the central part of the occipital, occipital sutures, internal occipital protuberance, foramen magnum, basilar part of occipital bone, jugular foramen, sigmoid sinus, internal auditory meatus, petrous bone, fracture hole, foramen ovale, pituitary fossa, orbital frontal plate. Pterional near the zygomatic arch, orbital fissure and maxilla; at a speed of 6 m/s blow when the stress concentration position in addition to the site, but also affects the optic canal; at a speed of 10 m/s when the collision stress concentration also increased and the frontal region between the eyebrows plate. But the stress concentration range than the same speed Fall. Small striking position of contact force under different velocity - time curve, hit that greater speed, contact the peak contact force increases, reaches the peak contact force earlier. Frontal and occipital pressure curve showed that the occipital pressure shock is positive, and the pressure on the forehead the positive and negative value for punching alternating with.6 speed under two different damage stress nephogram comparison shows: falling injury stress concentration area than against injury is wider; contact force time curve shows: falling injury peak contact force than combat injuries; occipital pressure shock comparison shows: pillow the pressure difference caused by falling injury and trauma; frontal pressure at the hedge comparison shows that when the amount of positive and negative pressure fall injury changes more sharply than combat injuries. Conclusion: 1 normal human brain CT data based on the application of the corresponding software to reconstruct anatomical structure similarity Comparison of human skull injury experimental three-dimensional geometric model and finite element model of.2 and foreign classic body head high, the validation of the research model, for biomechanical simulation.3 successfully simulated the occipital skull fall injury and violence against injury and compared two indicators. The biomechanics of the middle occipital when the stress propagation in the main direction for the occipital skull base - frontal skull. Stress concentration area and the clinical skull base fracture predilection site. Under the same operating condition, greater speed, more prone to injury. The causes of fracture of skull frontal may be due to fatigue fracture caused by alternating positive and negative pressure with the speed of.4, caused by the fall of the skull injury than deceleration pad violence strikes skull accelerated injury stress distribution in a wider range, more serious consequences, more prone to hedge fractures.
【學(xué)位授予單位】:河北醫(yī)科大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:R651.15
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳興武;張美超;利煥祥;李杰;張荊;;頭部鈍器損傷實(shí)驗(yàn)與仿真分析[J];中國臨床解剖學(xué)雜志;2013年05期
2 陳興武;李杰;張雨;張美超;;滑倒致顱腦損傷的有限元仿真研究[J];廣東公安科技;2012年04期
3 步瑋;崔慧先;趙慶林;吳建;彭志剛;趙建;任慧玲;;基于CT圖像構(gòu)建顱骨三維有限元模型的研究[J];河北醫(yī)藥;2011年04期
4 趙建華;蘭靜;裴永生;;基于CT圖像的顱骨有限元模型構(gòu)建及臨床應(yīng)用[J];河北醫(yī)藥;2011年04期
5 劉寧國;陳憶九;鄒冬華;鄭劍;;數(shù)字化技術(shù)在法醫(yī)顱腦損傷生物力學(xué)分析中的應(yīng)用[J];中國司法鑒定;2010年05期
6 束搏;邱顯杰;王兆其;;基于圖像的幾何建模技術(shù)綜述[J];計(jì)算機(jī)研究與發(fā)展;2010年03期
7 楊濟(jì)匡;彭勇;許偉;聶進(jìn);;顱腦創(chuàng)傷有限元模型的建立及驗(yàn)證(英文)[J];中國組織工程研究與臨床康復(fù);2009年52期
8 趙鵬飛;王守森;王如密;;顱腦損傷致傷原因研究現(xiàn)狀[J];中國臨床神經(jīng)外科雜志;2009年04期
9 古成中;吳新躍;;有限元網(wǎng)格劃分及發(fā)展趨勢(shì)[J];計(jì)算機(jī)科學(xué)與探索;2008年03期
10 于建云;李俊祥;郭澤云;趙小林;趙旭東;;實(shí)驗(yàn)大鼠輕中型閉合性腦損傷昏迷指標(biāo)與分級(jí)標(biāo)準(zhǔn)[J];法醫(yī)學(xué)雜志;2008年01期
相關(guān)博士學(xué)位論文 前1條
1 陳蓉;顱腦減速傷CT影像及生物力學(xué)致傷機(jī)制研究[D];第三軍醫(yī)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前8條
1 王丹;基于骨折特性的顱腦損傷建模及碰撞傷害研究[D];吉林大學(xué);2014年
2 胡浩;車輛碰撞事故中顱腦損傷建模與傷害評(píng)價(jià)研究[D];吉林大學(xué);2014年
3 單春來;顱腦沖擊損傷力學(xué)響應(yīng)分析[D];大連理工大學(xué);2014年
4 李盼東;六歲兒童頭部的有限元建模及碰撞仿真分析[D];天津科技大學(xué);2012年
5 賈昭;顱骨三維模型的建立和有限元計(jì)算及實(shí)驗(yàn)應(yīng)力分析的研究[D];吉林大學(xué);2007年
6 何培;三維人體顱腦有限元模型構(gòu)建和顱腦正面碰撞分析[D];天津科技大學(xué);2006年
7 李久權(quán);基于CT影像的人體頭骨仿生制造的初步研究[D];天津科技大學(xué);2006年
8 陳興武;人頭部力錘試驗(yàn)的生物力學(xué)研究及有限元模型的建立[D];第一軍醫(yī)大學(xué);2004年
,本文編號(hào):1740364
本文鏈接:http://sikaile.net/yixuelunwen/jjyx/1740364.html