輕型鏈球菌促進(jìn)銅綠假單胞菌致病性及機(jī)制研究
[Abstract]:Part I Effect of Streptococcus militaris on pathogenicity of Pseudomonas aeruginosa BF Objective: Mechanical ventilation is widely used and biofilm (BF) is formed in tracheal tube (ETT). Ventilator associated pneumonia (VAP) in newborns is still a difficult clinical problem. Normal bacteria in oropharynx were the most common on the surface of ETT in neonates, and the detection rate of S. mitis was higher in VAP group. Cell viability, IL-8 expression and TLR2,4 expression were detected after BCM stimulation of human airway epithelial cells (BEAS-2B). The total viable bacteria and P. aeruginosa in mixed BF were significantly higher than those in PAO1 alone (P 0.05). However, compared with BCM in PAO1 alone, the cytotoxicity of mixed BCM and the expression of IL-8, TLR2, 4 induced by mixed BCM were significantly lower (P 0.05). It is believed that normal oropharyngeal bacteria, on the one hand, can enhance the adhesion of PAO1 and BF formation, thereby escaping the host immunity and antibiotic killing; on the other hand, S. mitis reduces the host immune response induced by PAO1. This may be the reason for the high detection rate of S. mitis on the surface of ETT BF in neonatal VAP children. The role of non-pathogenic bacteria in BF is generally believed to provide new insights into the pathogenesis of BF on the surface of neonatal VAP ETT. This view may also provide new research directions for other BF-related infections. BF also releases planktonic bacteria after maturation and affects the host. Studies have shown that some oral colonies (such as Porphyromonas dentatus, actinomycetes, etc.) can promote the adhesion of certain respiratory pathogens to host cells and tissues, thereby affecting them. Pathogenicity. So does S. mitis have any effect on planktonic P. aeruginosa? This part of the experiment is to clarify the question. Methods: Planktonic bacteria were divided into PAO1 group, S. mitis group and PAO1 + S. mitis group. Bacteria (MOI = 100) were added to human respiratory epithelial cells (BEAS-2B). Invasion and adhesion experiments were used to observe the invasion of bacteria on BEAS-2B cells. Results: Compared with PAO1 alone group, S. mitis could promote the invasion ability of PAO1 to BEAS-2B (P 0.05), but had no significant effect on the adhesion ability of PAO1 to BEAS-2B (P 0.05). There was no significant difference in cell survival rate and IL-8 level between PAO1 + S. mitis group and PAO1 alone group (P 0.05). Conclusion: S. mitis can enhance the invasiveness of PAO1 on BEAS-2B cells, but has no effect on PAO1 adhesion to BEAS-2B cells, suggesting that the mechanisms are different. The effect of sex may be mainly produced in the BF state. Part 3 Streptococcus minimus promotes the formation of biofilm by enhancing the QS system of Pseudomonas aeruginosa biofilm. The mechanism of intercommunion regulation in multispecies BF is the key to the formation of BF, and the Quorum sensing (QS) system is the key to the study of BF regulation in multispecies. The first part has proved that S. mitis can enhance the adhesion of PAO1 and the formation of BF, but the specific mechanism is unclear; and P. aeruginosa QS system is closely related to its adhesion and BF formation ability. So, is S. mitis related to P. aeruginosa QS system? Group R, P.a_Las R_rhl R, S.mitis, PAO1+S.mitis, P.a_las R+S.mitis, P.a_Las R RHL R+S.mitis, P.a_Las R RHL R+S.mitis, crystal violet, plate counting and optical microscopy were used to observe bacterial adhesion, crystal violet, plate counting and laser confocal microscopy (CLSM) were used to observe the formation of BF. Results: The adhesion of PAO1+S.mitis, P.a91las R+S.mitis, P.a91las R+S.mitis, P.a91LasR91rhl R+S.mitis, P.a91R+S.mitis three groups were significantly stronger than PAO1 alone, P.a91lasR and P.a91lasR and P.a91LasR91rhl R group (P 0.05); and the plate count results showed that PAO1+S.mitis, P.a91las R+S.mitis, P.a91las R+S.las, P.a91las R+S.las, P.a91R+S.las, P.a91las, P.A91The adhesion of P. aeruginosa in RHL R + S. mitis mixed group was higher than that in RHL R + S. mitis mixed group. BF biomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomabiomaDifference (P 0.05). S. mitis could up-regulate the QS gene of PAO1 strain The expression of QS gene (including Las I, Las R, RHL I, RHL R, RHL I, RHL R) was significantly higher than that of PAO1 group (P 0.05), but there was no significant difference between P.a91las R+S.mitis group and P.a91las R+S.mitis group and P.a91las R91rhl R+S.mitis group (including Las I, Las R, RHL I, RHL R, RHL I, RHL R) and P.a91las91las91las91las R and P.a91Rmitmitmitmitmitaerl group (P 0.05). Conclusion: for P.a91las91las91las91rasrasrasrasrasrasrasadhesion force S. mitis promotes BF formation by up-regulating the P. aeruginosa QS gene. Whether this mechanism is directly mediated by S. mitis or whether certain substances (such as AI-2) secreted by S. mitis play a role in the formation of P. aeruginosa BF remains to be demonstrated by future experiments.
【學(xué)位授予單位】:重慶醫(yī)科大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:R378.991
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 林曉 ,陳美云 ,林其昌 ,陳公平;222株銅綠假單胞菌藥敏結(jié)果[J];現(xiàn)代醫(yī)藥衛(wèi)生;2002年10期
2 王炳華;王炳云;;106株銅綠假單胞菌藥敏結(jié)果分析[J];基層醫(yī)學(xué)論壇;2004年06期
3 黃志強(qiáng);李麗君;盧娟;;肺結(jié)核病合并感染銅綠假單胞菌的藥敏分析[J];臨床肺科雜志;2010年09期
4 封尊玉;;銅綠假單胞菌的治療策略[J];海南醫(yī)學(xué);2010年21期
5 劉萍;張志倫;倪丹妮;吳杰紅;;銅綠假單胞菌產(chǎn)金屬β-內(nèi)酰胺酶因素分析[J];中華醫(yī)院感染學(xué)雜志;2011年23期
6 吳麗娟,熊爾陽(yáng),鄧光貴;聚合酶鏈反應(yīng)檢測(cè)銅綠假單胞菌的研究現(xiàn)狀[J];國(guó)外醫(yī)學(xué).臨床生物化學(xué)與檢驗(yàn)學(xué)分冊(cè);1996年06期
7 周鐵麗,曹建明;一種鑒定銅綠假單胞菌的新方法[J];陜西醫(yī)學(xué)檢驗(yàn);1997年04期
8 朱小平;78株銅綠假單胞菌藥敏結(jié)果的初步探討[J];江蘇臨床醫(yī)學(xué)雜志;1999年05期
9 孫東華,邊瑞巖,孫躍軍,王慶敏;銅綠假單胞菌污染礦泉水調(diào)查分析[J];環(huán)境與健康雜志;2000年04期
10 張文英;86株銅綠假單胞菌的耐藥調(diào)查[J];華夏醫(yī)學(xué);2000年04期
相關(guān)會(huì)議論文 前10條
1 方莉;許媛;黃義山;蔡燕;唐中;楊明輝;廖濤;;銅綠假單胞菌金屬β-內(nèi)酰胺酶基因的檢測(cè)[A];中華醫(yī)學(xué)會(huì)第九次全國(guó)檢驗(yàn)醫(yī)學(xué)學(xué)術(shù)會(huì)議暨中國(guó)醫(yī)院協(xié)會(huì)臨床檢驗(yàn)管理專業(yè)委員會(huì)第六屆全國(guó)臨床檢驗(yàn)實(shí)驗(yàn)室管理學(xué)術(shù)會(huì)議論文匯編[C];2011年
2 周明明;周鐵麗;李超;吳慶;陳櫟江;吳蓮鳳;彭定輝;;主動(dòng)外排在銅綠假單胞菌耐藥中的作用研究[A];2009年浙江省檢驗(yàn)醫(yī)學(xué)學(xué)術(shù)年會(huì)論文匯編[C];2009年
3 陳邦;王琰;茍曉峰;陳林;;嘧霉胺對(duì)銅綠假單胞菌基因的調(diào)節(jié)[A];第六屆全國(guó)化學(xué)生物學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2009年
4 朱丹;李欣;;對(duì)亞胺培南耐藥的銅綠假單胞菌的體外藥敏分析[A];2005年浙江省呼吸系病學(xué)術(shù)年會(huì)論文匯編[C];2005年
5 洪波;貢聯(lián)兵;;銅綠假單胞菌對(duì)亞胺培南的藥敏分析[A];第五次全國(guó)中青年檢驗(yàn)醫(yī)學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2006年
6 徐海茹;田彬;岳娜;胡志東;;臨床分離的銅綠假單胞菌耐藥結(jié)果分析[A];第五次全國(guó)中青年檢驗(yàn)醫(yī)學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2006年
7 趙書(shū)平;姜梅杰;;神經(jīng)內(nèi)科重癥監(jiān)護(hù)室銅綠假單胞菌氨基糖苷類修飾酶基因研究[A];中華醫(yī)學(xué)會(huì)第七次全國(guó)檢驗(yàn)醫(yī)學(xué)學(xué)術(shù)會(huì)議資料匯編[C];2008年
8 張杜超;方向群;;微重力對(duì)銅綠假單胞菌毒力影響及與肺部感染關(guān)系[A];2011年空間生命與生命起源暨航天醫(yī)學(xué)工程學(xué)術(shù)研討會(huì)論文集[C];2011年
9 李春梅;鐘曉祝;;銅綠假單胞菌醫(yī)院感染監(jiān)測(cè)分析[A];中華預(yù)防醫(yī)學(xué)會(huì)消毒分會(huì)學(xué)術(shù)年會(huì)論文匯編[C];2010年
10 熊娟;梁麗紅;;尿液中分離出產(chǎn)紅膿素的銅綠假單胞菌[A];2012全國(guó)臨床微生物與感染免疫學(xué)術(shù)研討會(huì)論文集[C];2012年
相關(guān)重要報(bào)紙文章 前5條
1 浙江大學(xué)醫(yī)學(xué)院附屬第一醫(yī)院 俞云松;銅綠假單胞菌耐藥全國(guó)流行[N];健康報(bào);2008年
2 李曙平;銅綠假單胞菌 老年病房的主要致病菌[N];中國(guó)中醫(yī)藥報(bào);2003年
3 王振嶺;銅綠假單胞菌耐藥問(wèn)題嚴(yán)重[N];中國(guó)醫(yī)藥報(bào);2002年
4 天津醫(yī)科大學(xué)總醫(yī)院檢驗(yàn)科 胡志東;關(guān)注銅綠假單胞菌對(duì)碳青霉烯類藥物的耐藥[N];健康報(bào);2009年
5 ;碳青霉烯類抗生素[N];農(nóng)村醫(yī)藥報(bào)(漢);2007年
相關(guān)博士學(xué)位論文 前10條
1 張瑞琴;氟喹諾酮類藥物誘導(dǎo)銅綠假單胞菌耐藥性及分子機(jī)制的研究[D];山西醫(yī)科大學(xué);2015年
2 曹振輝;銅綠假單胞菌裂解性噬菌體的篩選、鑒定及應(yīng)用[D];大連理工大學(xué);2015年
3 蘇甜甜;銅綠假單胞菌鞭毛及生物膜調(diào)控蛋白FleQ和糖苷水解酶PslG的結(jié)構(gòu)與功能研究[D];山東大學(xué);2015年
4 張明亮;銅綠假單胞菌F_(190-342)-I_(21-83)基因重組鼠傷寒沙門(mén)菌的構(gòu)建及實(shí)驗(yàn)免疫研究[D];吉林大學(xué);2015年
5 蔡雙啟;銅綠假單胞菌對(duì)頭孢哌酮鈉/舒巴坦鈉的耐藥變遷及差異蛋白組學(xué)和比較基因組學(xué)研究[D];廣西醫(yī)科大學(xué);2016年
6 倪磊;銅綠假單胞菌蹭行運(yùn)動(dòng)和表面感知機(jī)制的研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2016年
7 張秋勤;生鮮雞肉中腐敗菌群體感應(yīng)信號(hào)分子研究[D];南京農(nóng)業(yè)大學(xué);2014年
8 宋思捷;輕型鏈球菌促進(jìn)銅綠假單胞菌致病性及機(jī)制研究[D];重慶醫(yī)科大學(xué);2016年
9 張若文;燒傷病房耐碳青霉烯類銅綠假單胞菌耐藥機(jī)制及分子流行病學(xué)研究[D];吉林大學(xué);2012年
10 張亞妮;谷胱甘肽與銅綠假單胞菌致病性及抗生素抗性的關(guān)系研究[D];西北大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 賈子中;黃連素對(duì)燒傷創(chuàng)面銅綠假單胞菌生物膜干預(yù)試驗(yàn)及自制中藥臨床應(yīng)用觀察[D];內(nèi)蒙古大學(xué);2015年
2 王穎;新型抗耐藥革蘭氏陰性菌藥物的篩選研究[D];北京協(xié)和醫(yī)學(xué)院;2015年
3 馬超;無(wú)機(jī)鎵化合物抗菌性能研究[D];西南交通大學(xué);2015年
4 蒲攀;林麝源銅綠假單胞菌的分離鑒定及毒力研究[D];四川農(nóng)業(yè)大學(xué);2014年
5 任佳會(huì);間接ELISA檢測(cè)林麝源銅綠假單胞菌抗體方法的建立及應(yīng)用評(píng)估[D];四川農(nóng)業(yè)大學(xué);2015年
6 白文麗;林麝養(yǎng)殖場(chǎng)銅綠假單胞菌的分布調(diào)查及抗菌消毒藥物的篩選[D];四川農(nóng)業(yè)大學(xué);2015年
7 董滿園;銅綠假單胞菌群體感應(yīng)抑制劑的分離與活性評(píng)價(jià)[D];中國(guó)海洋大學(xué);2015年
8 鄭紅達(dá);假單胞菌喹諾酮信號(hào)系統(tǒng)抑制劑的篩選與研究[D];中國(guó)海洋大學(xué);2013年
9 李鴻飛;黏液型銅綠假單胞菌耐藥特征和耐藥株相關(guān)基因型分析[D];吉林大學(xué);2016年
10 王康;銅綠假單胞菌調(diào)節(jié)蛋白VqsR、Arr及T3SS系統(tǒng)轉(zhuǎn)運(yùn)蛋白PopB/D的結(jié)構(gòu)與功能研究[D];山東大學(xué);2016年
,本文編號(hào):2204841
本文鏈接:http://sikaile.net/yixuelunwen/jichuyixue/2204841.html