轉(zhuǎn)錄因子組合誘導成纖維細胞直接重編程為汗腺樣細胞的實驗研究
[Abstract]:OBJECTIVE: Previously, our team has confirmed that the establishment of certain co-culture conditions can induce mesenchymal stem cells to transdifferentiate into sweat gland-like cells, and through the paw wound model test in nude mice and preliminary human experiments, it has been proved that the induced autologous bone marrow mesenchymal stem cells transplanted into scar-resected wounds can produce sweat glands. The main purpose of this study is to further identify the key reprogramming transcription factors (NF-kappa B and Lef-1) controlling the differentiation of fibroblasts into sweat-like cells and their mediated signaling pathways by reprogramming fibroblasts. The reprogramming mechanism of apocrine sweat-like cells provides hope for the use of other types of cells as seed cells for sweat gland regeneration and for the realization of sweat gland regeneration in patients with extensive clinical sweat gland injury. METHODS: Previous studies have shown that the key signaling pathways involved in regulating fibroblast reprogramming into sweat-like cells involve NF-KB and Lef-1, and so on. Documented involvement in regulating the development of sweat gland cells during embryonic development, changes in proteins in the development process, to identify the major transcription factors involved in the regulation of NF-kappa B and Lef-1 gene combinations, analysis of its involved signal pathway network, and further verify its biological function. 1. Experimental grouping and operating procedures: cells to be cultured to logarithmic. At the growth stage, when the growth density is above 80%, the cells are inoculated into 6-well plates according to the density of 106 holes. The cells are randomly divided into several groups. Independent, so called "independent group" design) will be divided into three groups (each group sample size is 5). 1) target gene transfection group: the construction of eukaryotic expression vector containing NF-kappa B and Lef-1 gene into cells and screened out stable expression of monoclonal, for subsequent experimental use; 2 empty vector group: pcDNA3.1 (+) empty vector transfection fine. Blank control group: no transfection of the target gene, cultured under the same experimental conditions. 2. Reprogramming of human fibroblasts with NF-kappa B and Lef-1 genes: Construction of eukaryotic expression vector 2.1: National Center of Biotechnology I Find the gene sequences of human NF-kappa B and Lef-1 on nformation.NCB1, design the open reading frame (ORF) PCR primers of NF-kappa B and Lef-1 genes according to the sequences and the experimental needs, extract the total RNA of human fibroblasts with the total RNA extraction kit, synthesize the target cDNA by the action of reverse transcriptase, and synthesize the cDNA and pcDN. A3.1 (+) vectors were digested with Hind III/Sal I and Hind III/Pst I and linked with DH-5a respectively. In order to verify the mutation of the target gene sequences of NF-kappa B and Lef-1, the recombinant bacterial fluid was sent to Huada gene for sequencing, the mutant-free monoclonal bacterial fluid was selected for preservation, and the plasmid was extracted correctly after sequencing. Plasmid concentration 2.2 was used to transfect the cells and select stable expression cell lines. The cultured cells were inoculated on 96-well plate with 5000 cells per hole density. The cells were cultured on G418 medium of different concentrations. The concentration of killing all the cells from 10 to 14 days was used as the basic concentration to determine the screening concentration and maintain the concentration. The cultured cells were inoculated into 6-well plate and transfected according to the standard procedure of liposome transfection. After 48 hours of transfection, the transfected cells were screened by the medium containing G418 at 800 mg/L concentration. After 2 weeks, the screening pressure was maintained at 200 mg/L concentration. Positive monoclones were selected and cultured in 96-well plate. The stable transfected cells were expanded to culture. Realtime-PCR was used to detect the mRNA expression of NF-kappa B and Lef-1 in three groups of cells. Therefore, we used 1 ug/ml EDA-A1, 50 ng/ml EGF to induce reprogrammed human fibroblasts to differentiate into SGLCs.3.1 sweat gland markers. The expression of sweat gland-related molecules such as CEA, CK7, CK14 and CK19 in NF-kappa B and Lef-1 reprogrammed human fibroblasts was identified by immunofluorescence assay. The expression of sweat gland-related molecules CEA, CK7, CK14 and CK19 in human fibroblasts reprogrammed with NF-kappa B and Lef-1 were detected at protein level, and the expression of sweat gland-related molecules CEA, CK7, CK14 and CK19 in human fibroblasts reprogrammed with NF-kappa B and Lef-1 were quantitatively detected by Realtime-PCR. Realtime-PCR was used to quantitatively detect the expression of Shh and Cyclin D 1, the key downstream genes of NF-kappa B and Lef-1 pathways in human fibroblasts reprogrammed with NF-kappa B and Lef-1. 3.3 Nude mouse paw transplantation experiment: The function of reprogrammed sweat-like cells and the regeneration and repair of sweat glands were explored by using a nude mouse model established in previous experiments. Fibroblasts made up of pcDNA3.1 (+) - NF-KB and pcDNA3.1 (+) - Lef-1 and fibroblasts from the other two groups of control group were implanted into the paws of scalded nude mice with a 150 ml suspension made of 1 *106 cells by injector. The biological functions of reprogrammed sweat-like cells were observed by histological examination and sweat test 20 days later. Results: 1. Construction of eukaryotic expression vectors of NF-kappa B and Lef-1: The open reading frame (ORF) of NF-kappa B and Lef-1 genes were cloned into pcDNA3.1 (+) vector. After digestion by Hindlll/Sal I and Hindlll/Pst I, the bands with relative molecular weight of 3000 BP and 1200 BP were detected by agarose electrophoresis. Eukaryotic expression vectors pcDNA3.1 (+) - NF-kappa B and pcDNA3.1 (+) - Lef-1 were successfully constructed. 2. G418 screening and detection of NF-kappa B and Lef-1 expression showed that all the non-transfected cells died after 2 weeks of incremental screening in G418 medium, and positive clones were formed after 20 days of screening. The relative expression levels of NF-kappa B mRNA in blank vector group and blank control group were 3.651+0.062,0.987+0.098,1.118+0.024,2.451+0.032,0.997+0.078,1.158+0.043 respectively,indicating that the expression of NF-kappa B and Lef-1 mRNA in stably transfected human fibroblasts also increased significantly compared with blank control group. There was significant difference between the two groups (P 0.01), and there was also significant difference between the two groups (P 0.01). The recombinant vector had a higher transcription level in the cells. 3. Sweat gland markers detection: Western blot results showed that the expression of CEA, CK7, CK14 and CK19 proteins in pcDNA3.1 (+) -NF-KB and pcDNA3.1 (+) -Lef-1 transfection group were significantly higher than that in the empty vector group. The expression of CEA, CK7, CK14 and CK19 mRNA in pcDNA3.1 (+) -NF-kappa B and pcDNA3.1 (+) -Lef-1 transfection groups were significantly higher than that in blank control group and blank control group. Immunofluorescence staining showed that pcDNA3.1 (+) -NF-KB and pcDNA3.1 (+) -Lef-1 were transfected. The fluorescence intensity of CEA, CK7, CK14 and CK19 was very strong in the infection group, but the fluorescence intensity of the same protein in the other two control groups was basically invisible. The relative expression of Cyclin D1 mRNA was 2.653+0.045, 0.997+0.048, 1.118+0.053 respectively, indicating that the expression of SHH and Cyclin D1 mRNA in stably transfected human fibroblasts was also significantly increased compared with the blank control group (P 0.01), and the difference was also statistically significant compared with the empty carrier group (P 0.01). Shh and Cyclin D1, which are considered to be important in the process of sweat gland regeneration, have higher transcription levels in cells. 5. Nude mice plantar transplantation test: iodine starch sweating test 20 days later showed that about 7/10 of the experimental group's plantar was positive, and blue-black areas were visible in the middle of the plantar, whereas the two control groups showed that No corresponding positive results were found. Histological examination showed that the regeneration of sweat glands and the connection of sweat gland ducts in basal layer were seen in HE stained sections of the soles of the nude mice in the target gene transfection group, while no regeneration of sweat gland structures was found in the control group. Conclusion: The gene combination of NF-kappa B and Lef-1 can directly reprogram human fibroblasts to differentiate into sweat-like cells, and the expression of sweat-gland specific markers CEA, CK7, CK14 and CK19 in the process of inducing sweat-like cells is obvious, and the downstream genes Shh and Cyclin D1 confirm the expression of NF-kappa B and Lef-1. These two pathways, kappa B and Lef-1, play an important role in the process of direct reprogramming. The reprogrammed human fibroblasts have been validated in a nude mouse model, which lays a theoretical foundation for the reprogramming of sweat gland-like cells with other types of cells and the regeneration of sweat gland. People bring hope to the regeneration of sweat glands.
【學位授予單位】:中國人民解放軍醫(yī)學院
【學位級別】:博士
【學位授予年份】:2016
【分類號】:R329.2
【相似文獻】
相關期刊論文 前10條
1 蔣曉明,王鋒;成熟促進因子對克隆重構(gòu)胚核重編程的調(diào)控[J];四川動物;2004年04期
2 陳濤濤;康九紅;;細胞重編程的分子機制[J];生命科學;2009年03期
3 習佳飛;岳文;裴雪濤;;細胞重編程與表觀遺傳學調(diào)控[J];生命科學;2009年03期
4 張磊;;細胞重編程中的表觀遺傳分子機制[J];生命科學;2009年05期
5 王璞;湯奇勝;陳露萍;沈亦雯;沙紅英;朱劍虹;;誘導細胞功能轉(zhuǎn)化的新策略——譜系重編程[J];生理科學進展;2010年05期
6 孫紅艷;王鋒;曹文廣;;細胞命運轉(zhuǎn)變——譜系重編程技術研究進展[J];遺傳;2012年08期
7 孟姝;田勇;;細胞重編程:再生醫(yī)學研究的革命性突破——寫在2012年諾貝爾生理學或醫(yī)學獎頒布之際[J];生物化學與生物物理進展;2012年11期
8 周軍年;岳文;裴雪濤;;細胞譜系重編程研究進展[J];中國科學:生命科學;2013年01期
9 李海燕;杜衛(wèi)華;郝海生;趙學明;洪志平;李敏;;核重編程機制的影響因素[J];生物學雜志;2010年01期
10 劉雨瀟;張志文;傅相平;金鵬;李安民;張毅;;細胞提取物重編程研究進展[J];生物化學與生物物理進展;2011年11期
相關會議論文 前10條
1 潘傳英;藍賢勇;陳宏;Colin E Bishop;;利用特定因子誘導293T細胞的重編程研究[A];第十二次全國畜禽遺傳標記研討會論文集[C];2010年
2 李勁松;;細胞重編程和胚胎發(fā)育[A];細胞—生命的基礎——中國細胞生物學學會2013年全國學術大會·武漢論文摘要集[C];2013年
3 周琪;;體細胞重編程,挑戰(zhàn)與希望[A];細胞—生命的基礎——中國細胞生物學學會2013年全國學術大會·武漢論文摘要集[C];2013年
4 王二耀;于洋;焦麗紅;王柳;周琪;;不同遺傳背景的小鼠卵母細胞去核后重編程能力的研究[A];第十屆全國生殖生物學學術研討會論文摘要集[C];2005年
5 范宗興;余大為;郝海生;趙學明;王棟;劉巖;秦彤;朱化彬;杜衛(wèi)華;;爪蟾卵母細胞抽提物誘導體細胞重編程研究[A];中國畜牧獸醫(yī)學會動物繁殖學分會第十六屆學術研討會論文集[C];2012年
6 高紹榮;;體細胞重編程研究進展[A];2012年中國科協(xié)海峽兩岸青年科學家學術活動月——第九屆海峽兩岸細胞生物學學術研討會論文集[C];2012年
7 楊柳;AL-KAL Abakar;蔣和生;;體細胞核移植技術中核重編程機制進展概述[A];中國畜牧獸醫(yī)學會動物繁殖學分會第十五屆學術研討會論文集(上冊)[C];2010年
8 裴端卿;;Jhdm1a/1b以維生素C依賴性提高重編程效率[A];2012年中國科協(xié)海峽兩岸青年科學家學術活動月——第九屆海峽兩岸細胞生物學學術研討會論文集[C];2012年
9 趙宏喜;王莉;朱亞靜;姜鋒;李揚;張健;姚元慶;李凌松;;克服干細胞移植免疫排斥及iPS細胞重編程機制的初步研究[A];2012全國發(fā)育生物學大會摘要集[C];2012年
10 潘傳英;盧柏松;陳宏;Colin E Bishop;;利用HIV-1 TAT融合表達4個轉(zhuǎn)錄因子蛋白重編程人的成纖維細胞[A];中國動物遺傳育種研究進展——第十五次全國動物遺傳育種學術討論會論文集[C];2009年
相關重要報紙文章 前10條
1 譚薇 編譯;細胞重編程助力干細胞研發(fā)[N];第一財經(jīng)日報;2009年
2 記者 胡德榮;高效誘導體細胞重編程有新法[N];健康報;2010年
3 胡德榮;體細胞重編程分子機制研究獲突破[N];中國醫(yī)藥報;2004年
4 岳陽;我學者發(fā)現(xiàn)改良iPS細胞的重要因子[N];中國醫(yī)藥報;2012年
5 記者 胡德榮;重編程異常細胞是“麻煩”制造者[N];健康報;2011年
6 胡德榮;體細胞重編程研究有新發(fā)現(xiàn)[N];健康報;2004年
7 胡德榮;羊水細胞能高效快速重編程為誘導多能干細胞[N];中國醫(yī)藥報;2009年
8 張夢然;生物體內(nèi)環(huán)境同樣適合細胞重新編程[N];科技日報;2013年
9 記者胡德榮;我國科學家培育出豬“萬能”干細胞[N];健康報;2009年
10 趙永新;我科學家培育出世界首個豬干細胞[N];保健時報;2009年
相關博士學位論文 前10條
1 陳嘉瑜;Tet1對誘導型重編程的影響及非整合型hiPSC誘導的研究[D];北京協(xié)和醫(yī)學院;2013年
2 高亞威;DNA羥甲基化酶Tet1促進體細胞重編程機制的研究[D];北京協(xié)和醫(yī)學院;2013年
3 劉宇辰;重編程的CRISPR-Cas9對HPV6/11 E7基因轉(zhuǎn)化細胞增殖與凋亡的影響及其機制研究[D];安徽醫(yī)科大學;2015年
4 裴楊莉;Rab32通過促進脂類合成提高小鼠iPSCs的誘導效率[D];中國農(nóng)業(yè)大學;2015年
5 白海棟;SMYD3在牛著床前胚胎發(fā)育及胎兒成纖維細胞生長中作用的研究[D];內(nèi)蒙古大學;2015年
6 趙二虎;去甲基化酶KDM4C影響腫瘤細胞增殖與代謝重編程的分子機制研究[D];西南大學;2015年
7 魏興林;基于piggyBac基因抓捕體系的重編程相關基因的高通量篩選[D];中國農(nóng)業(yè)大學;2014年
8 陳曦;丙戊酸對人骨髓來源的細胞重編程作用的研究[D];吉林大學;2016年
9 翟英穎;丙戊酸促進小鼠成纖維細胞重編程機制的研究[D];吉林大學;2016年
10 王術勇;小分子化合物介導譜系重編程獲取內(nèi)胚層祖細胞及其相關機制研究[D];中國人民解放軍軍事醫(yī)學科學院;2016年
相關碩士學位論文 前10條
1 武麗瓊;重編程中間態(tài)細胞(KMEG-prCs)的鑒定及二次重編程研究[D];內(nèi)蒙古大學;2015年
2 白權(quán)子;OsBBM1重新沉默的表觀機制探究和OsPIE1基因的功能探究[D];華中農(nóng)業(yè)大學;2015年
3 李夢娟;體細胞及腫瘤細胞重編程的研究和CRISPR-Cas9技術在急性早幼粒性白血病中應用研究[D];復旦大學;2014年
4 劉紅;無線傳感器網(wǎng)絡重編程協(xié)議Rateless Deluge安全性研究與改進[D];南京航空航天大學;2014年
5 汪治理;基于代碼差異的無線傳感器網(wǎng)絡重編程方法研究[D];南京航空航天大學;2014年
6 賈文超;重編程因子與TAT融合蛋白的原核、真核表達研究[D];西北農(nóng)林科技大學;2015年
7 陶佳;DOT1L抑制劑對豬著床前克隆胚體外發(fā)育及H3K79二甲基化重編程的影響[D];安徽農(nóng)業(yè)大學;2014年
8 魏超;豬不完全重編程誘導多能干細胞的獲取及生物學特性[D];安徽農(nóng)業(yè)大學;2014年
9 秦勝堂;體細胞重編程過程中Pkm2表達特征和功能研究[D];大連醫(yī)科大學;2015年
10 王燕;基于納米基因傳遞系統(tǒng)的直接重編程:誘導分化成肝臟樣細胞的研究[D];江蘇大學;2016年
,本文編號:2176816
本文鏈接:http://sikaile.net/yixuelunwen/jichuyixue/2176816.html