金黃色葡萄球菌腸毒素B引起THP-1細(xì)胞凋亡的作用與機(jī)制研究
[Abstract]:Apoptosis (Apoptosis) is an important biological process in multicellular organisms, which has many functions that affect tissue differentiation, metabolism and immunomodulation. In the infectious diseases caused by bacteria, the specific components of bacteria can regulate the apoptosis of host cells through a variety of ways, and this has also been proved to be crucial to the process of disease. Important effects. Staphylococcus aureus, as an important human pathogen, can also cause cell apoptosis in the process of infection. In many diseases closely related to Staphylococcus aureus, such as atopic dermatitis (Atopic Dermatitis, AD) and sepsis (sepsis), abnormal host cell apoptosis can be found. The important characteristic of Staphylococcus aureus is that it can secrete a variety of toxins, including hemolysin, leukin, enterotoxin and secretase. Enterotoxin is an important Staphylococcus aureus superantigen, in many diseases closely related to Staphylococcus aureus. The natural receptors of enterotoxin include the T cell receptor (TCR) and the major histocompatibility complex II (major histocompatibility complex II, MHCII). Staphylococcus aureus enterotoxin combined with TCR to activate the hypersensitivity of T cells, while MHCII has the role of promoting apoptosis. In the enterotoxin family, gold The distribution of staphylococcal enterotoxin B (staphylococcal enterotoxin B, SEB) is widely distributed, and the research is also in depth that.SEB has been proved to cause apoptosis in T cells and peripheral blood mononuclear cells (PBMC), and this cell apoptosis is closely related to the disease caused by Staphylococcus aureus, such as AD, but whether SEB can cause mononuclear macrophage apoptosis, And its molecular mechanism is still unclear. This study cloned the genome of Staphylococcus aureus XQ strains isolated and completed genome sequencing from our lab, expressed and purified the recombinant SEB protein with biological activity, and carried out the study on the use and mechanism of SEB to induce THP-1 mononuclear macrophage apoptosis, and found a dependence on TN. The positive feedback loop of F alpha plays a very important role in this process. At the same time, it is found that metallothionein 2A (metallothionein 2A, MT2A) can increase the expression of TNF alpha induced by SEB, thus promoting the formation of TNF alpha positive feedback loop, which is important in the process of SEB induced apoptosis of THP-1 cells. The results of this study are in depth in the future. The mechanism of the action of Staphylococcus aureus enterotoxin and the host cells provide important reference for the mechanism of the toxin attack. The main research methods and results in this paper are as follows: 1. the expression vector of recombinant SEB protein was constructed, the whole genome of Staphylococcus aureus XQ strain was expressed and purified as a template, and the SEB coding was obtained by PCR technology. The expression plasmid pET30a-SEB. was successfully constructed and the expression plasmid P ET30a-SEB was transformed into the expression strain of Escherichia coli C43 by BamHI+Xho I double enzyme digestion and the expression plasmid pET30a-SEB. was successfully constructed, and the recombinant SEB protein was successfully induced. The recombinant SEB protein expressed in the expression was purified by nickel column affinity chromatography and used to remove the endotoxin. The endotoxin was removed by the plain gel column. The ultrafiltration column was concentrated and replaced by PBS buffer solution. The purity of the recombinant protein was determined by SDS-PAGE. The concentration of protein and the reaction test of the reagents were detected by Bradford. The purity of the recombinant SEB protein was above 95%, the concentration was 539.2 Mu g/ml and the content of the toxin was lower than 2EU/ml. Cell experiments require that.2. recombinant SEB protein have the role of inducing apoptosis of THP-1 cells, and the Beijing microgene Technology Co., Ltd. is entrusted with the STR detection of the THP-1 cell lines we have received. No human cell cross contamination is found in the cells, and the THP-1 cells in the American model culture center (American type culture collection, ATCC) are not found. The matching rate of STR data was 93.33%, which confirmed that our cell line was a derived cell line of THP-1. Using Annexin V+PI double staining and flow cytometry, the recombinant SEB protein could induce apoptosis of THP-1 cells, the proportion of apoptosis was about 3%, and it had time and dose dependent effects. The broad-spectrum caspase inhibitor Z-VAD-FMK, I was used. We confirmed that the apoptosis of THP-1 cells induced by recombinant SEB protein is dependent on the cascade activation of caspase. In THP-1 cells activated by IFN- gamma and PMA induced THP-1 cells, the proportion of apoptosis induced by recombinant SEB protein is higher by Annexin V+PI double staining and flow cytometry, which is about 7.5% and 15%. endotoxin activates THP-1 cells, respectively. The apoptosis of THP-1 cells was enhanced by the enhanced recombinant SEB protein. However, after IFN- gamma activation and PMA induced differentiation, the apoptosis of THP-1 cells in the negative control group was also increased. In order to avoid the interference of additional factors, we have used the recombinant SEB protein directly to act on THP-1 cells in the next study without any additional cell activation or induction. Differentiation of.3. recombinant SEB protein induced THP-1 cell apoptosis dependent on a TNF alpha positive feedback loop classic apoptosis including exogenous (caspase 8 activation) and endogenous (caspase 9 activation) two pathways. We detected the enzyme activity of the enzyme activity of TPH-1 cells after the action of recombinant SEB protein by Caspase-3, -8, and -9 activity detection kits The apoptosis of THP-1 cells induced by recombinant SEB protein is dependent on the activation of Caspase-3 and -8 without relying on the activation of caspase-9, indicating that the exogenous pathway plays an important role in the apoptosis of THP-1 cells induced by SEB. The transcriptional level of the apoptotic phase molecules in the THP-1 cells after the recombinant SEB protein is detected by the RT-q PCR, and the recombinant SEB eggs are found. After white treatment, the transcriptional level of TNF alpha and HLA-DRa in THP-1 cells increased significantly. Further using ELISA and Western blot experiments, we confirmed that the expression of TNF alpha and HLA-DRa induced by recombinant SEB protein increased in THP-1 cells. The apoptosis induced by recombinant protein was detected by the action of anti-TNF alpha monoclonal antibody and TNF alpha. The ratio decreased to about 1%, which was significantly different from the 3.5% of the recombinant SEB protein, while the same type control antibody had no effect. It proved that TNF alpha played a key role in the apoptosis of THP-1 cells induced by SEB. Using Si RNA to interfere with the expression of HLA-DRa and TNFR1, we found that the recombinant SEB protein was caused in the interfered THP-1 cells. The percentage of apoptotic cells (about 2.5%) was significantly lower than that of the control group (about 9%) with non target Si RNA interference. At the same time, the level of TNF a secreted by HLA-DRa and TNFR1 siRNA interfered with the recombinant SEB protein was also significantly lower than that of the control group without the target siRNA interference. And TNF a itself would increase the HLA-DRa expression, thereby increasing the weight. The combination of group SEB protein and HLA-DRa makes the secretion of TNF a further increase, thus forming a positive feedback loop dependent on TNF alpha. The apoptosis of THP-1 cells caused by recombinant SEB protein depends on the formation of this positive feedback loop and the complete.4.MT2A by promoting the positive feedback pathway of TNF alpha to promote THP-1 fineness caused by the recombinant SEB protein. Apoptosis is the receptor of SEB, the only cytoplasmic region of THP-1 cell HLA-DRa contains only 15 amino acid residues and does not contain any known domain. After the combination of HLA-DRa and SEB, the subsequent signal transduction may depend on other membrane proteins which are directly combined with HLA-DRa. And how to increase the expression mechanism of TNF alpha after SEB binding HLA-DRa It is not clear that we use immunoprecipitation technique to capture proteins interacting with HLA-DRa by anti-HLA-DRa monoclonal antibody, and we found that a metallothioneins (MTs) MT2A may be involved in the apoptosis process of THP-1 cells induced by SEB. We use RT-q PCR to analyze MTs expression profiles in THP-1 cells and The transcriptional level changes after the recombination of SEB protein, the results showed that the expression of MTs in THP-1 cells included MT1E, F, G, X and MT2A. After the recombination of SEB protein, only MT2A expression rose and.Western blot experiment further confirmed the expression of the recombinant protein. In cell analysis, we found that the apoptosis ratio of recombinant SEB protein (about 4%) in THP-1 cells interfered with MT2A expression (about 4%) was significantly less than that of the control group without target Si RNA interference (about 8%). Using ELISA and Western blot experiments, we further detected the effect of recombinant protein on siRNA interfering MT2A expression of THP-1 cells. The expression level of NF alpha and HLA-DRa decreased, indicating that MT2A can play an important role in the apoptosis of THP-1 cells induced by recombinant SEB protein by promoting the formation of TNF alpha positive feedback loop. This is the first time that the expression of SEB has a regulatory role in the expression of MTs, which provides a theoretical basis for further study of the role and mechanism of bacterial toxin regulating MTs in the future.
【學(xué)位授予單位】:第三軍醫(yī)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:R378.11
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王建霞,黃永富,張清泉;細(xì)胞凋亡與疾病關(guān)系[J];交通醫(yī)學(xué);2000年06期
2 王東生,袁肇凱,郭志華;細(xì)胞凋亡與中醫(yī)藥[J];中國中醫(yī)藥信息雜志;2000年12期
3 萬曉艷,于蘇國,郭玉芹,何慶;細(xì)胞凋亡與自身免疫性甲狀腺疾病的研究進(jìn)展[J];中國地方病防治雜志;2002年06期
4 祝偉民,林建棣,馬曉東,段小平;運(yùn)動(dòng)與細(xì)胞凋亡[J];中國臨床康復(fù);2004年27期
5 王會玲,景文莉,張小紅,高維娟;細(xì)胞凋亡與心肌缺血-再灌注損傷[J];承德醫(yī)學(xué)院學(xué)報(bào);2005年04期
6 梁薇;細(xì)胞凋亡的中藥調(diào)節(jié)機(jī)制[J];四川中醫(yī);2005年11期
7 張松彪;細(xì)胞凋亡與細(xì)胞養(yǎng)生[J];中國科技產(chǎn)業(yè);2005年01期
8 楊竹林,伍漢文;細(xì)胞凋亡調(diào)控因素有關(guān)基因的研究[J];國外醫(yī)學(xué)(生理、病理科學(xué)與臨床分冊);1997年02期
9 劉恩梅,楊錫強(qiáng);細(xì)胞凋亡及其影響因素[J];重慶醫(yī)學(xué);1998年01期
10 ;美開發(fā)調(diào)控細(xì)胞凋亡藥物[J];中國腫瘤;1999年07期
相關(guān)會議論文 前10條
1 陳穎麗;李前忠;;不同亞細(xì)胞位置的細(xì)胞凋亡蛋白質(zhì)的結(jié)構(gòu)特性分析[A];第十一次中國生物物理學(xué)術(shù)大會暨第九屆全國會員代表大會摘要集[C];2009年
2 孫英麗;趙允;朱山;翟中和;;植物細(xì)胞凋亡及其機(jī)理的研究[A];中國細(xì)胞生物學(xué)學(xué)會第七次會議論文摘要匯編[C];1999年
3 劉二龍;袁慧;;鋅與細(xì)胞凋亡[A];2003全國家畜內(nèi)科學(xué)學(xué)術(shù)研討會論文專輯[C];2003年
4 邱潔;高海青;;鋅在細(xì)胞凋亡中的作用研究進(jìn)展[A];山東省微量元素科學(xué)研究會第三屆學(xué)術(shù)研討會論文匯編[C];2006年
5 俞雅萍;;細(xì)胞凋亡的機(jī)制及途徑和影響因素[A];華東六省一市生物化學(xué)與分子生物學(xué)學(xué)會2006年學(xué)術(shù)交流會論文集[C];2006年
6 于青;袁偉杰;姚建;;晚期糖基化終末產(chǎn)物引起足細(xì)胞凋亡的機(jī)制[A];2007年浙滬兩地腎臟病學(xué)術(shù)年會資料匯編[C];2007年
7 季宇彬;尹立;汲晨鋒;;調(diào)控細(xì)胞凋亡的線粒體因素[A];腫瘤病因?qū)W研究與中西醫(yī)結(jié)合腫瘤綜合診療交流研討會論文集[C];2009年
8 吳經(jīng)緯;湯長發(fā);;運(yùn)動(dòng)中細(xì)胞凋亡的線粒體變化特征[A];湖南省生理科學(xué)會2006年度學(xué)術(shù)年會論文摘要匯編[C];2007年
9 蒲小平;李長齡;屠鵬飛;宋志宏;;中藥肉叢蓉成分抗神經(jīng)細(xì)胞凋亡的實(shí)驗(yàn)研究[A];第七屆全國生化藥理學(xué)術(shù)討論會論文摘要集[C];2000年
10 江鍵;宋誠榮;崔黎麗;方影;王小平;;靜電場對細(xì)胞凋亡作用的初步探討[A];中國物理學(xué)會第九屆靜電學(xué)術(shù)年會論文集[C];2000年
相關(guān)重要報(bào)紙文章 前10條
1 商東;“細(xì)胞凋亡”與臨床醫(yī)學(xué)[N];中國醫(yī)藥報(bào);2001年
2 張志軍;細(xì)胞凋亡與中醫(yī)藥[N];中國醫(yī)藥報(bào);2002年
3 ;“細(xì)胞凋亡療法”正逐步成為治療癌癥的新途徑[N];中國高新技術(shù)產(chǎn)業(yè)導(dǎo)報(bào);2002年
4 記者張建松;治療癌癥新途徑:細(xì)胞凋亡療法[N];科技日報(bào);2002年
5 李明輝;“細(xì)胞凋亡”治癌癥[N];醫(yī)藥導(dǎo)報(bào);2002年
6 洪敏;細(xì)胞凋亡研究引人關(guān)注[N];中國醫(yī)藥報(bào);2008年
7 陶春祥;細(xì)胞凋亡對心臟疾病的影響[N];中國醫(yī)藥報(bào);2003年
8 本報(bào)實(shí)習(xí)記者 梁媛媛;薛定:發(fā)現(xiàn)癌癥“開關(guān)”[N];北京科技報(bào);2010年
9 高書明;誘導(dǎo)癌細(xì)胞凋亡[N];中國醫(yī)藥報(bào);2004年
10 勇匯;中藥誘導(dǎo)癌細(xì)胞凋亡研究進(jìn)展[N];中國醫(yī)藥報(bào);2002年
相關(guān)博士學(xué)位論文 前10條
1 張驍鵬;金黃色葡萄球菌腸毒素B引起THP-1細(xì)胞凋亡的作用與機(jī)制研究[D];第三軍醫(yī)大學(xué);2017年
2 楊利;系列多氮類化合物的抗腫瘤活性研究[D];武漢大學(xué);2012年
3 張浩;從分子、細(xì)胞和動(dòng)物水平研究鉛誘發(fā)氧化損傷及細(xì)胞凋亡的效應(yīng)與機(jī)理[D];山東大學(xué);2015年
4 何欣怡;家蠶微孢子蟲(Nosema bombycis)抑制家蠶BmN細(xì)胞凋亡的功能研究[D];浙江大學(xué);2015年
5 馮全服;從線粒體途徑研究川芎嗪誘導(dǎo)HepG2細(xì)胞凋亡效應(yīng)機(jī)制[D];南京中醫(yī)藥大學(xué);2015年
6 張曉倩;高糖誘導(dǎo)Bim蛋白高表達(dá)而促腎近曲小管上皮細(xì)胞凋亡的機(jī)制探討[D];山東大學(xué);2015年
7 孫健瑋;PTEN基因負(fù)調(diào)控Raf1磷酸化的作用及其對PC3細(xì)胞凋亡的影響[D];昆明醫(yī)科大學(xué);2014年
8 徐林艷;腫瘤細(xì)胞凋亡過程中TNFRSF10B和CFLAR調(diào)控機(jī)制研究[D];山東大學(xué);2015年
9 樊慶端;生物調(diào)控網(wǎng)絡(luò)的建模與動(dòng)力學(xué)行為研究[D];上海大學(xué);2015年
10 王德選;WNK_3對鈉氯協(xié)調(diào)轉(zhuǎn)運(yùn)子的調(diào)節(jié)及在胚腎細(xì)胞凋亡中的保護(hù)作用[D];南方醫(yī)科大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 曹璐璐;2,2’,4,4’-四溴聯(lián)苯醚(BDE-47)對人胚腎細(xì)胞(HEK293)的毒理效應(yīng)及作用機(jī)制研究[D];中國科學(xué)院煙臺海岸帶研究所;2015年
2 張薇;蒜頭果蛋白誘導(dǎo)HepG-2細(xì)胞凋亡的研究[D];云南民族大學(xué);2015年
3 唐建國;視黃醇X受體出核抑制對神經(jīng)元細(xì)胞凋亡的影響[D];福建醫(yī)科大學(xué);2015年
4 安璐;3-氯-1,2-丙二醇細(xì)胞毒性及其誘導(dǎo)HEK293細(xì)胞凋亡途徑探究[D];江南大學(xué);2015年
5 楊翔;Procaspase-8的異常表達(dá)抑制TRAIL誘導(dǎo)腫瘤細(xì)胞凋亡[D];昆明理工大學(xué);2015年
6 張昌明;I3C通過調(diào)控p53泛素化對喉癌Hep-2細(xì)胞凋亡的影響[D];延邊大學(xué);2015年
7 彭涵;共軛亞油酸對仔豬脂肪細(xì)胞凋亡的影響[D];西南大學(xué);2015年
8 李立輝;ΔFosB通過MMP-9調(diào)控山羊乳腺上皮細(xì)胞凋亡的分子機(jī)制[D];西北農(nóng)林科技大學(xué);2015年
9 楊鑫鋮;Hedgehog信號通路在大鼠急性胰腺炎腺泡細(xì)胞凋亡中的作用[D];河北醫(yī)科大學(xué);2015年
10 賈瓊瓊;MicroRNA-214對H_2O_2損傷L6骨骼肌成肌細(xì)胞增殖和凋亡的影響[D];河北醫(yī)科大學(xué);2015年
,本文編號:2120059
本文鏈接:http://sikaile.net/yixuelunwen/jichuyixue/2120059.html