基于功能磁共振成像的腦網(wǎng)絡(luò)研究
[Abstract]:The human brain, with 100 billion neurons and 100 billion synapses, is the most complex system known in the universe. Information reconciliation at multiple spatial and temporal scales is a prerequisite for brain function to support all cognition and behavior. Functional magnetic resonance imaging (f MRI), as a non-invasive in vivo brain functional imaging method, has a high spatial-temporal resolution and provides a powerful means for the study of large-scale human brain functional networks. The basic research on the neural network mechanism of head movement and the spatiotemporal dynamic characteristics of spontaneous nerve activity, as well as the methodologies and related applications of supervised and unsupervised mode analysis of brain state based on functional connectivity MRI (fc MRI). The work of this paper mainly includes the following four aspects Rong: Neural network mechanism of spontaneous head movement in brain imaging. Individual differences in brain indices, especially functional connectivity measured by F MRI, are correlated with head movement differences in data acquisition. The premise of this result is that the connection differences caused by head motion artifacts are corrected completely. In the second chapter of this paper, it is proposed that brain connection differences may also be possible. It is a neurobiological feature that predicts head movement differences. We support this argument by comparing the large head motion data and the small head motion data between individuals and individuals. Inter-individual analysis found the biological marker of head movement, i.e. the weakening of long-range functional connectivity in the default network of the large head motion subjects. In intra-individual analysis, this was not the case. Similar junctional differences were observed. On the contrary, this biomarker was very stable in individuals. These findings suggest that differences in brain junctions can not be simply considered as head-movement artifacts, but may also reflect individual differences in functional tissues. The third chapter demonstrates the feasibility of supervised pattern analysis based on whole brain resting FC MRI in differentiating patients with severe depression. The results demonstrate the supervised classification based on whole brain resting FC MRI. The most discriminatory functional connections were found in the default network, the emotional network, the visual cortex and the cerebellum, indicating that these resting networks associated with disease may be responsible for the emotional and cognitive development of patients with major depression. In addition, the amygdala, anterior cingulate cortex, parahippocampal gyrus and hippocampus may play important roles in the pathology of depression. These results suggest that resting FC MRI may be a potential biological marker for the diagnosis of depression. The diagnosis of depression is based on the patient's self-reported symptoms and clinical manifestations, so it may be influenced by the patient's current behavior and doctor's prejudice. In chapter 4, we propose an unsupervised brain network pattern classification framework based on resting FC MRI, which uses unsupervised clustering of FC MRI data without using the label information of diagnostic categories. We defined two sub-regions in the knee cingulate cortex: the subgenu and the anterior genu. Based on the functional connectivity map of the subgenu, the maximum interval clustering algorithm can distinguish the depressive patients from the healthy subjects. Both the group level clustering accuracy and the individual level classification accuracy are achieved. 92.5%. In addition, the most differentiated subgenicular cingulate functional connectivity networks include the ventrolateral and ventromedial prefrontal lobes, superior temporal gyrus, and marginal regions, which may play an important role in the pathology of depression. This study suggests that the subgenicular cingulate functional connectivity network characteristics can provide ideal and objective information for the diagnosis of major depression. Biological markers also indicate the potential of unsupervised machine learning based on maximum-interval clustering in clinical practice and in assistant psychiatric research. Spatiotemporal dynamics of spontaneous neural activity in the human brain. In the fifth chapter, the instantaneous synthesis and decomposition of brain states are obtained by clustering the co-activity patterns of a single BOLD (blood oxygenation level dependence) and the time phase of F MRI, showing that brain activities compete with each other in the time domain. These patterns are different from the classical functional networks and can dynamically follow distinct organizational and functional boundaries within the brain area in time domain. When performing semantic classification tasks, the temporal organization of these spatial patterns is similar. Task-related states can be observed in resting state, but selectively appear in task state. In short, these results indicate that human brain activities in resting state are dynamically fixed in the temporal domain. Transient states may better reveal ongoing cognitive processing, provide an indicator of behavioral change, and serve as a guide to behavioral change by increasing awareness of the brain's fixed functional repertoire attributes (including determining their potential electrophysiological correlations). Potential biomarkers of disease.
【學(xué)位授予單位】:國防科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:R445.2;R338
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張寶林;張輝陽;;超順磁性氧化鐵納米粒子在腦磁共振成像中的應(yīng)用[J];磁共振成像;2011年05期
2 王超;杜劍平;閆鑌;王大會(huì);史大鵬;;SPM軟件包頭動(dòng)校正原理的分析與評(píng)價(jià)[J];中國組織工程研究與臨床康復(fù);2010年52期
3 王浩;郭冰冰;陳麗峰;侯文生;陰正勤;;視覺正常人簡單圖形視覺刺激的視皮層功能定位及定量研究[J];眼科新進(jìn)展;2010年01期
4 邱文娟;李建新;閆鑌;杜劍平;史大鵬;;基于SPM5的視覺刺激3T功能磁共振成像數(shù)據(jù)處理研究[J];信息工程大學(xué)學(xué)報(bào);2010年03期
5 許守林;郭萬華;張劍戈;賈鵬;李愛梅;;PET標(biāo)準(zhǔn)腦圖譜在阿爾茨海默病早期診斷中的應(yīng)用[J];中國醫(yī)療設(shè)備;2009年10期
6 支聯(lián)合;譚素敏;杜遠(yuǎn)東;;磁共振成像技術(shù)的物理學(xué)原理[J];周口師范學(xué)院學(xué)報(bào);2008年02期
7 張艷;陳春曉;張志強(qiáng);盧光明;;基于代價(jià)函數(shù)掩模法的局部腦損傷fMRI數(shù)據(jù)處理[J];中國生物醫(yī)學(xué)工程學(xué)報(bào);2008年06期
8 郝冬梅;李瑩;李明愛;;基于功能磁共振成像的大腦運(yùn)動(dòng)皮層網(wǎng)絡(luò)連通性研究[J];中國生物醫(yī)學(xué)工程學(xué)報(bào);2009年03期
9 支聯(lián)合;王華東;張潔;;統(tǒng)計(jì)參數(shù)圖和多尺度特征提取用于事件相關(guān)fMRI分析的比較[J];中國生物醫(yī)學(xué)工程學(xué)報(bào);2011年01期
10 支聯(lián)合;譚素敏;楊建國;;基于混頻去除和矩陣算法的多尺度特征提取方法分析fMRI數(shù)據(jù)[J];中國生物醫(yī)學(xué)工程學(xué)報(bào);2012年03期
相關(guān)博士學(xué)位論文 前10條
1 朱雪玲;首發(fā)未服藥青年重性抑郁癥腦網(wǎng)絡(luò)連接的磁共振成像研究[D];中南大學(xué);2011年
2 翁曉光;靜息態(tài)腦功能磁共振數(shù)據(jù)分析方法及在弱視神經(jīng)機(jī)制中的應(yīng)用研究[D];南京航空航天大學(xué);2010年
3 柯銘;基于功能磁共振成像的腦功能網(wǎng)絡(luò)模式研究與應(yīng)用[D];蘭州理工大學(xué);2009年
4 羅英姿;冗思在青少年抑郁發(fā)展中的作用及其神經(jīng)機(jī)制[D];中南大學(xué);2009年
5 李貞晶;基于腦功能區(qū)fMRI分析的針刺效應(yīng)研究[D];黑龍江中醫(yī)藥大學(xué);2012年
6 孫金燕;利用腦電及光電聯(lián)合檢測(cè)分別研究注意中的定向和執(zhí)行控制[D];華中科技大學(xué);2013年
7 陳俊琦;針刺缺血性腦卒中病人外關(guān)穴fMRI腦功能成像研究[D];南方醫(yī)科大學(xué);2013年
8 李永欣;珠心算訓(xùn)練對(duì)兒童大腦可塑性的影響以及大腦結(jié)構(gòu)隨訓(xùn)練時(shí)間的變化[D];浙江大學(xué);2013年
9 孫金燕;利用腦電及光電聯(lián)合檢測(cè)分別研究注意中的定向和執(zhí)行控制[D];華中科技大學(xué);2013年
10 李寶娟;基于功能磁共振成像的腦連接分析[D];國防科學(xué)技術(shù)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 符靜嫣;不同基底下EEG、MEG正問題數(shù)值解比較[D];上海師范大學(xué);2011年
2 張浩;基于fMRI與EEG對(duì)癲癇病的基礎(chǔ)研究[D];南京航空航天大學(xué);2010年
3 邱文娟;腦功能磁共振成像數(shù)據(jù)的相關(guān)性研究[D];解放軍信息工程大學(xué);2011年
4 韓耀啟;磁共振DWI與DTI在腦梗死中的應(yīng)用研究[D];泰山醫(yī)學(xué)院;2009年
5 張艷;基于DCM的腦功能有效連接及在癲癇病中的應(yīng)用[D];南京航空航天大學(xué);2009年
6 王浩;視覺正常人圖形刺激的視皮層功能核磁共振定位和定量研究[D];第三軍醫(yī)大學(xué);2010年
7 王前鋒;小動(dòng)物高分辨擴(kuò)散成像方法研究[D];華東師范大學(xué);2012年
8 袁福來;灼口綜合征患者心理健康狀況及腦功能影像學(xué)研究[D];中南大學(xué);2012年
9 陳亮;大學(xué)生抑郁情緒的腦內(nèi)信息模式研究[D];大連海事大學(xué);2013年
10 王驍冠;功能磁共振成像嗅覺刺激器的設(shè)計(jì)與驗(yàn)證[D];中國科學(xué)院研究生院(長春光學(xué)精密機(jī)械與物理研究所);2013年
,本文編號(hào):2178885
本文鏈接:http://sikaile.net/yixuelunwen/fangshe/2178885.html