差分自回歸移動(dòng)平均與廣義回歸神經(jīng)網(wǎng)絡(luò)組合模型在丙型肝炎月發(fā)病率中的預(yù)測(cè)應(yīng)用
[Abstract]:Objective to explore the effect and application prospect of differential autoregressive moving average (ARIMA) model combined with generalized regression neural network (GRNN) model in predicting the monthly incidence of hepatitis C. Methods from May 2015 to May 2016, the monthly incidence data of hepatitis C from 2004 to 2014 and the population data of the same period published by Shandong Bureau of Statistics were selected. Based on the monthly incidence data of hepatitis C in Shandong Province from 2004 to 2014, the ARIMA model was constructed to verify the fitting accuracy and extrapolate prediction, and the fitting value of ARIMA model was taken as the input of GRNN model and the actual value was taken as the output of GRNN model to train and predict the samples. To compare the predictive effect of simple ARIMA model and ARIMA-GRNN combination model in the monthly incidence of hepatitis C. Results the average annual incidence of hepatitis C in Shandong Province from 2004 to 2014 was 17.28 / 100 000, and showed an increasing trend with the passage of time. The results are as follows: 1) the incidence of hepatitis C in Shandong Province in 2014 is basically consistent with the actual incidence, falling within 95% confidence interval, and the fitting effect is good. The fitting value of ARIMA model was taken as the input of GRNN model, the actual value of monthly incidence of hepatitis C was taken as the output of GRNN model, and the optimal smoothing factor 0.12 training model was selected. The average error rate of ARIMA model and ARIMA-GRNN combination model is 16.8715.30, respectively. The average absolute error (MAE) is 0.170.09, and the average absolute percent error (MAPE) is 1.18 ~ 0.35. The determination coefficient (R _ (2) is 0.53 ~ (0.60), the average absolute error (MAE) is 0.17 ~ (0.09), respectively. Conclusion the ARIMA-GRNN combination model is superior to the simple ARIMA model in fitting and predicting the incidence of hepatitis C in Shandong province. It has a higher fitting precision and has a broad application prospect. It has some practical significance for the prediction of the epidemic situation.
【作者單位】: 濰坊醫(yī)學(xué)院公共衛(wèi)生與管理學(xué)院衛(wèi)生統(tǒng)計(jì)學(xué)教研室;
【基金】:“健康山東”重大社會(huì)風(fēng)險(xiǎn)預(yù)測(cè)與治理協(xié)同創(chuàng)新中心資助課題(XT-1402001)
【分類號(hào)】:R512.63
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 胡曉媛;吳娟;孫慶文;沙琨;王玲玲;李敏;;ARIMA模型與GRNN模型對(duì)肺結(jié)核發(fā)病率預(yù)測(cè)的對(duì)比研究[J];第二軍醫(yī)大學(xué)學(xué)報(bào);2016年01期
2 吳偉;郭軍巧;安淑一;關(guān)鵬;周寶森;;應(yīng)用ARIMA-GRNN模型對(duì)腎綜合征出血熱發(fā)病率時(shí)間序列數(shù)據(jù)的預(yù)測(cè)研究[J];中國(guó)衛(wèi)生統(tǒng)計(jì);2015年02期
3 武海波;周紫霄;黃奕祥;;2004-2011年中國(guó)丙型病毒性肝炎流行病學(xué)特征分析[J];現(xiàn)代預(yù)防醫(yī)學(xué);2015年07期
4 姜超;劉文東;胡建利;朱葉飛;鮑昌俊;湯奮揚(yáng);彭志行;陳峰;;丙肝疫情3種不同疾病預(yù)測(cè)預(yù)警方法比較[J];中國(guó)公共衛(wèi)生;2015年04期
5 吳昊澄;王臻;何凡;孫繼民;曾蓓蓓;魯琴寶;劉碧瑤;趙艷榮;;基于GM(1,1)-GRNN組合模型的腎綜合征出血熱發(fā)病率預(yù)測(cè)[J];中國(guó)媒介生物學(xué)及控制雜志;2012年04期
6 韓琴;蘇虹;王忱誠(chéng);單曉偉;常微微;徐志偉;王靜;韓紅梅;;ARIMA模型與GRNN模型對(duì)性病發(fā)病率的預(yù)測(cè)研究[J];現(xiàn)代預(yù)防醫(yī)學(xué);2012年06期
7 朱玉;夏結(jié)來(lái);王靜;;單純ARIMA模型和ARIMA-GRNN組合模型在猩紅熱發(fā)病率中的預(yù)測(cè)效果比較[J];中華流行病學(xué)雜志;2009年09期
相關(guān)博士學(xué)位論文 前1條
1 嚴(yán)薇榮;傳染病預(yù)警指標(biāo)體系及三種預(yù)測(cè)模型的研究[D];華中科技大學(xué);2008年
相關(guān)碩士學(xué)位論文 前3條
1 朱玉;單純ARIMA模型和ARIMA-GRNN組合模型在猩紅熱月發(fā)病率中的預(yù)測(cè)效果比較[D];安徽醫(yī)科大學(xué);2011年
2 任茹香;基于GRNN的變權(quán)重組合預(yù)測(cè)模型在傳染病發(fā)病率預(yù)測(cè)中的應(yīng)用[D];浙江大學(xué);2011年
3 王平;三種預(yù)測(cè)模型在主要傳染病發(fā)病率預(yù)測(cè)中的應(yīng)用[D];浙江大學(xué);2010年
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李文華;楊亞濤;曾年華;;馬爾可夫鏈在南方某部隊(duì)肺結(jié)核發(fā)病趨勢(shì)預(yù)測(cè)分析中的應(yīng)用[J];華南國(guó)防醫(yī)學(xué)雜志;2017年05期
2 馬曉梅;劉穎;楊夢(mèng)利;閆國(guó)立;徐學(xué)琴;王瑾瑾;郗園林;段廣才;;手足口病月發(fā)病率ARIMA乘積季節(jié)模型預(yù)測(cè)探討[J];現(xiàn)代預(yù)防醫(yī)學(xué);2017年09期
3 廖如s,
本文編號(hào):2304144
本文鏈接:http://sikaile.net/yixuelunwen/chuanranbingxuelunwen/2304144.html