人工免疫分類和異常識(shí)別算法的改進(jìn)
[Abstract]:Immune system is one of the main systems of life system. It plays an important role in dealing with complex changing environment by constructing self and non-self-adaptive network from different kinds of antibody structures. The artificial immune algorithm, inspired by the principle of immune system, has the characteristics of good diversity, tolerance, distributed parallel processing, self-organization, self-learning, self-adaptation and robustness, and can express learning knowledge clearly. It has the function of content memory and provides a good evolutionary learning mechanism for scholars. Its simulated natural defense function is surprisingly similar to the ability of anomaly detection system to distinguish normal anomaly, and it has good learning and memory ability and strong robustness. Therefore, it provides a new choice for solving the problems of anomaly detection and classifier construction. In this paper, some basic concepts, characteristics and mechanisms of biological immune system are described, and some classical algorithms in the field of artificial immune algorithm are introduced, as well as their advantages and disadvantages. Then an improved immune anomaly detection algorithm with variable detector size is proposed to solve the "void" problem in traditional negative selection algorithm and to simulate the lack of single antibody in the improved antibody diversity algorithm. The validity of the algorithm is verified by experimental analysis. Aiming at the problem that the accuracy of the immune classification algorithm is not high under a small amount of training data, a semi-supervised immune classification algorithm is proposed by introducing the idea of semi-supervised learning mechanism and voting decision, and the validity of the algorithm is verified by experimental analysis.
【學(xué)位授予單位】:福建師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類號(hào)】:R392.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 焦李成,杜海峰;人工免疫系統(tǒng)進(jìn)展與展望[J];電子學(xué)報(bào);2003年10期
2 倪建成;李志蜀;孫繼榮;周利平;;樹突狀細(xì)胞分化模型在人工免疫系統(tǒng)中的應(yīng)用研究[J];電子學(xué)報(bào);2008年11期
3 嚴(yán)宣輝;;應(yīng)用疫苗接種策略的免疫入侵檢測(cè)模型[J];電子學(xué)報(bào);2009年04期
4 蔡濤;鞠時(shí)光;仲巍;牛德姣;;基于切割的檢測(cè)器生成與匹配算法[J];電子學(xué)報(bào);2009年S1期
5 ;Adaptive chaos clonal evolutionary programming algorithm[J];Science in China(Series F:Information Sciences);2005年05期
6 王輝;王科俊;于立君;杜志博;;基于免疫的最小有效檢測(cè)器集生成算法[J];計(jì)算機(jī)工程;2008年09期
7 肖人彬,王磊;人工免疫系統(tǒng):原理、模型、分析及展望[J];計(jì)算機(jī)學(xué)報(bào);2002年12期
8 張衡,吳禮發(fā),張毓森,曾慶凱;一種r可變陰性選擇算法及其仿真分析[J];計(jì)算機(jī)學(xué)報(bào);2005年10期
9 呂佳;熊忠陽;;面向多模態(tài)函數(shù)優(yōu)化的混沌免疫網(wǎng)絡(luò)算法研究[J];計(jì)算機(jī)應(yīng)用;2006年02期
10 李濤;Idid:一種基于免疫的動(dòng)態(tài)入侵檢測(cè)模型[J];科學(xué)通報(bào);2005年17期
,本文編號(hào):2262212
本文鏈接:http://sikaile.net/xiyixuelunwen/2262212.html