褪黑素2受體、糖原合酶激酶-3、蛋白磷酸酯酶-2A在突觸可塑性中的作用及機制研究
本文選題:MT2受體 + 糖原合酶激酶-3; 參考:《華中科技大學》2011年博士論文
【摘要】:[背景] 突觸可塑性是學習記憶的生物學基礎。軸突的正常發(fā)育和成熟所維系的軸-樹突極化對功能性突觸的形成和維持至關重要。褪黑素2(MT2)受體、糖原合酶激酶-3(Glycogen synthase kinase-3, GSK-3)和蛋白磷酸酯酶-2A(Protein phosphatase-2A, PP-2A)廣泛分布于腦內(nèi),在神經(jīng)系統(tǒng)發(fā)育和神經(jīng)退行性病變中起重要作用。MT2受體屬于G蛋白偶聯(lián)受體(GPCR)超家族,負責將細胞外信號轉(zhuǎn)至細胞內(nèi)。MT2受體下調(diào)抑制成年海馬神經(jīng)干細胞的分化、長時程增強(Long term potentiation, LTP)和學習記憶能力;而激活MT2受體能夠抑制海馬區(qū)域γ-氨基丁酸能突觸的傳遞。GSK-3和PP-2A屬于下游信號轉(zhuǎn)導樞紐,它們不但是腦內(nèi)公認的調(diào)節(jié)tau蛋白磷酸化的主要蛋白激酶和蛋白磷酸酯酶,而且還參與神經(jīng)元極性和突觸可塑性的調(diào)節(jié)。據(jù)報道,GSK-3過度激活導致突觸前神經(jīng)遞質(zhì)釋放減少進而引起LTP抑制和學習記憶障礙。本課題組前期研究結(jié)果顯示,褪黑素(MT2受體的天然配體)可下調(diào)GSK-3和上調(diào)PP-2A的活性,從而改善AD樣的tau蛋白過度磷酸化。然而,關于MT2受體與GSK-3和PP-2A的關系,以及三者對神經(jīng)元軸突形成和突觸可塑性的影響尚無報道。 [目的] 在離體和整體水平探討MT2受體和GSK-3、PP-2A在神經(jīng)元軸突形成及突觸可塑性中的作用以及它們之間的聯(lián)系;探討GSK-3異常引起突觸損傷的分子機制。 [方法] 在離體培養(yǎng)的原代海馬神經(jīng)元模型上,運用FM4-64釋放實驗研究突觸前神經(jīng)遞質(zhì)的釋放及軸突功能;全細胞膜片鉗檢測鈣內(nèi)流及突觸后微型興奮性突觸后電流(mEPSCs);全內(nèi)反射熒光顯微鏡(TIRFM)用于觀察囊泡的胞吐作用;免疫共沉淀和熒光共振能量轉(zhuǎn)移(FRET)檢測MT2與Akt及突觸前囊泡釋放相關蛋白之間的相互結(jié)合;免疫熒光檢測軸突發(fā)育及相關蛋白在細胞內(nèi)的分布情況;免疫印跡檢測蛋白質(zhì)的含量及磷酸化水平的改變。 [結(jié)果] (1)MT2受體對軸突形成及功能的影響及相關分子機制:激活MT2受體明顯促進海馬神經(jīng)元功能性軸突的形成并增強突觸傳遞,而抑制MT2受體則阻礙軸突分化,其機制如下:MT2受體通過Akt/GSK-3p/CRMP-2信號通路而不是aPKC信號通路發(fā)揮作用;MT2受體可與Akt直接結(jié)合從而抑制GSK-3活性:給予MT2受體C末端的多肽可以封閉MT2-Akt之間的結(jié)合,同時明顯削弱了MT2受體激活所引起的GSK-3抑制、軸突形成和突觸傳遞的增強效應;在整體水平上,MT2受體敲除通過下調(diào)PP2A活性引起tau蛋白過度磷酸化。 (2)GSK-3β對突觸前神經(jīng)遞質(zhì)釋放的影響及相關分子機制:激活GSK-3β可抑制突觸前囊泡的胞吐,其機制如下:激活GSK-3β通過磷酸化P/Q型Ca2+通道上含synprint位點的LⅡ-Ⅲ來抑制Ca2+內(nèi)流;激活GSK-3β可抑制LⅡ-Ⅲ與Ca2+感受器(synaptotagmin)、突觸小體相關蛋白25(SNAP25)和syntaxin的結(jié)合,突觸囊泡膜相關蛋白(synaptobrevin)與SNAP25和syntaxin的結(jié)合以及synaptobrevin與synaptophysin I的解離從而抑制Ca2+依賴的SNARE復合物的形成來阻止突觸前囊泡的胞吐。 (3)PP-2A對神經(jīng)突起生長的影響:PP-2A是神經(jīng)突起發(fā)育所必需的,上調(diào)PP-2A活性能夠促進突起,尤其是軸突的生長。 [結(jié)論] MT2受體激活通過抑制GSK-3來促進神經(jīng)元軸突生長和功能性突觸的形成,而在整體水平上,MT2受體敲除則通過下調(diào)PP-2A活性引起AD樣tau蛋白過度磷酸化;激活GSK-3通過磷酸化P/Q型鈣離子通道而抑制突觸前遞質(zhì)釋放,而上調(diào)PP-2A活性則對神經(jīng)突起尤其是軸突的生長有明顯促進作用。
[Abstract]:[background]
Synaptic plasticity is the biological basis for learning and memory. The axis dendrite polarization maintained by the normal development and maturation of axons is crucial to the formation and maintenance of functional synapses. Melatonin 2 (MT2) receptors, glycogen synthase kinase -3 (Glycogen synthase kinase-3, GSK-3), and protein phosphatase -2A (Protein phosphatase-2A, PP-2A) are widely divided. In the brain, it plays an important role in the development of nervous system and neurodegenerative diseases. The.MT2 receptor belongs to the G protein coupled receptor (GPCR) superfamily. It is responsible for the transfer of extracellular signal to the down regulation of.MT2 receptor to inhibit the differentiation of adult hippocampal neural stem cells, the long-term potentiation (Long term potentiation, LTP) and the learning and memory ability. The active MT2 receptor inhibits the transmission of gamma aminobutyric acid synapses in the hippocampus,.GSK-3 and PP-2A belong to the downstream signal transduction hub. They are not only recognized as the major protein kinase and protein phosphatase that regulate the phosphorylation of tau proteins in the brain, but also participate in the regulation of neuronal polarity and synaptic plasticity. It is reported that GSK-3 is overactivated. The release of presynaptic neurotransmitters and the reduction of LTP inhibition and learning and memory disorders. The previous study in our group showed that melatonin (natural ligand of MT2 receptor) could down regulate the activity of GSK-3 and PP-2A, thus improving the overphosphorylation of AD like tau protein. However, the relationship between the MT2 receptor and GSK-3 and PP-2A, as well as the three The effects of neuronal axonal formation and synaptic plasticity have not been reported.
[Objective]
To explore the role of MT2 receptor and GSK-3, PP-2A in the formation of axon and synaptic plasticity and the relationship between them, and to explore the molecular mechanism of synaptic damage caused by GSK-3 abnormalities in vitro and in whole level.
[method]
On the model of primary cultured hippocampal neurons in vitro, the release of presynaptic neurotransmitters and axon function were studied by FM4-64 release test. The whole cell patch clamp was used to detect the calcium influx and postsynaptic micro excitatory postsynaptic current (mEPSCs); the total internal reflection fluorescence microscopy (TIRFM) was used to observe the exocytosis of vesicles; immunoprecipitation and immunoprecipitation were used. Fluorescence resonance energy transfer (FRET) was used to detect the interaction between MT2 and Akt and the proteins associated with the release of presynaptic vesicles; immunofluorescence was used to detect the development of axon and the distribution of related proteins in the cells; the content of protein and the change of phosphorylation level were detected by immunoblotting.
[results]
(1) the effect of MT2 receptor on the formation and function of axon and its related molecular mechanism: activation of MT2 receptor obviously promotes the formation of functional axons of hippocampal neurons and enhances synaptic transmission, and the inhibition of MT2 receptors hinders axonal differentiation. The mechanism is as follows: MT2 receptor plays a role by Akt/GSK-3p/CRMP-2 signaling instead of aPKC signaling pathway. The MT2 receptor can bind directly with Akt to inhibit GSK-3 activity: the polypeptide given to the C terminal of the MT2 receptor can close the binding between MT2-Akt, and obviously weakens the GSK-3 inhibition caused by the activation of MT2 receptor, the formation of axon and the enhancement of synaptic transmission; at the overall level, MT2 receptor knockout by down regulation of PP2A activity causes tau protein. Excessive phosphorylation.
(2) the effect of GSK-3 beta on the release of presynaptic neurotransmitters and its molecular mechanism: activation of GSK-3 beta inhibits the exocytosis of presynaptic vesicles. The mechanism is as follows: activation of GSK-3 beta inhibits Ca2+ internal flow through the L II - III containing synprint loci on the phosphorylated P/Q Ca2+ channel, and activates GSK-3 beta to inhibit L II - III and Ca2+ receptor (synaptotagmin). The combination of synapse 25 (SNAP25) and syntaxin, the binding of synaptic vesicular membrane related protein (synaptobrevin) to SNAP25 and syntaxin, and the dissociation of synaptobrevin and synaptophysin I to inhibit the formation of Ca2+ dependent SNARE complexes to prevent the exocytosis of presynaptic vesicles.
(3) the effect of PP-2A on neurite outgrowth: PP-2A is necessary for neurite development. Up regulation of PP-2A activity can promote neurite outgrowth, especially axonal growth.
[Conclusion]
MT2 receptor activates the growth of neuronal axons and the formation of functional synapses by inhibiting GSK-3, while on the overall level, MT2 receptor knockout induces excessive phosphorylation of AD like tau protein by down regulation of PP-2A activity, and activates GSK-3 through the phosphorylated P/Q type calcium channel to inhibit the release of the pre inrush transmitter, while the up-regulation of PP-2A activity is to the deity. The growth of neurites is obviously promoted by neurites.
【學位授予單位】:華中科技大學
【學位級別】:博士
【學位授予年份】:2011
【分類號】:R392.1
【相似文獻】
相關期刊論文 前10條
1 ;衰老從40歲開始[J];生物學通報;2004年08期
2 孫樹敏;劉皓;;神經(jīng)生長相關蛋白與突觸可塑性[J];天津醫(yī)科大學學報;2007年01期
3 席艷;萬建華;鄧錦波;;突觸可塑性的生物物理學基礎和體視學測量研究進展[J];中國醫(yī)藥生物技術(shù);2009年05期
4 肖勝;章軍建;;內(nèi)源性大麻素系統(tǒng)和突觸可塑性研究進展[J];國際神經(jīng)病學神經(jīng)外科學雜志;2009年05期
5 張濤;;與突觸可塑性相關的神經(jīng)振蕩和信息流研究(英文)[J];生理學報;2011年05期
6 唐玲;唐榮偉;唐晶;任筠筠;;突觸可塑性與學習記憶關系的研究進展[J];川北醫(yī)學院學報;2012年01期
7 袁錦楣,李彤,楊俊華;突觸可塑性研究——Ⅰ.整肌膽堿酯酶—銀、金聯(lián)合染色法的建立及意義[J];北京醫(yī)科大學學報;1990年05期
8 周玲;楊世若;;短時程的突觸可塑性[J];四川生理科學雜志;1992年04期
9 郭敏;李剛;;突觸可塑性相關蛋白的研究進展[J];神經(jīng)藥理學報;2013年06期
10 王曉英,張均田;突觸可塑性與相關蛋白研究進展[J];中國藥理學通報;2001年04期
相關會議論文 前10條
1 張紅慧;王青云;;突觸可塑性影響下的第一類神經(jīng)元網(wǎng)絡的同步分析與放電轉(zhuǎn)遷[A];中國力學大會——2013論文摘要集[C];2013年
2 吳鵬飛;胡壯麗;楊遠堅;王芳;陳建國;;巰基化合物對海馬突觸可塑性的調(diào)節(jié)作用及機制[A];中國藥理學會第十一次全國學術(shù)會議?痆C];2011年
3 董智強;陳旭;曹立梅;;神經(jīng)激肽B1受體與突觸可塑性[A];第十三次全國中西醫(yī)結(jié)合虛證與老年醫(yī)學學術(shù)研討會論文集[C];2013年
4 陳建國;王芳;胡壯麗;王偉;吳文寧;;能量代謝調(diào)節(jié)激素對離子通道和突觸可塑性的作用及其機制[A];中國藥理學會第十一次全國學術(shù)會議專刊[C];2011年
5 吳正治;李明;李映紅;張曉麗;賈秀琴;陳蔓茵;;天泰1號對自發(fā)老年性癡呆鼠海馬突觸可塑性的電鏡定量研究[A];2008年全國抗衰老與老年癡呆學術(shù)會議論文集[C];2008年
6 賀文彬;張俊龍;陳乃宏;;鈣調(diào)素依賴性蛋白激酶Ⅱ:突觸可塑性的分子開關?[A];第三屆中國藥理學會補益藥藥理專業(yè)委員會學術(shù)研討會論文集[C];2013年
7 雍政;顏玲娣;宮澤輝;;噻吩諾啡對突觸可塑性的影響[A];中國藥理學會第十次全國學術(shù)會議?痆C];2009年
8 吳巧鳳;盧圣峰;余曙光;;沉默突觸在突觸可塑性及針灸促神經(jīng)康復中的作用探討[A];2010年中國針灸學會腦病專業(yè)委員會、中國針灸學會循證針灸專業(yè)委員會學術(shù)大會論文集[C];2010年
9 李澎濤;潘彥舒;黃啟福;賈旭;嚴京;王永炎;;解毒通絡方對腦缺血損傷后海馬區(qū)突觸可塑性的影響[A];第四次全國中西醫(yī)結(jié)合神經(jīng)系統(tǒng)疾病學術(shù)研討會論文集[C];2002年
10 胡前勝;董勝璋;陳學敏;;神經(jīng)細胞粘附分子與學習記憶[A];2003年全國免疫毒理學術(shù)交流會論文集[C];2003年
相關重要報紙文章 前1條
1 成都軍區(qū)總醫(yī)院 張虎軍;大腦越用越靈有科學依據(jù)[N];健康報;2008年
相關碩士學位論文 前10條
1 王瑋;一種融合多種可塑性的脈沖神經(jīng)網(wǎng)絡研究[D];重慶大學;2015年
2 楊波;富勒醇對海馬突觸可塑性影響的離體研究[D];中國科學技術(shù)大學;2011年
3 葉晨靜;快速眼動睡眠剝奪對大鼠海馬突觸可塑性相關基因表達的影響[D];第二軍醫(yī)大學;2006年
4 趙江;研究突觸后膜NMDA受體在突觸內(nèi)外側(cè)向移位對突觸可塑性的可能影響[D];南京醫(yī)科大學;2008年
5 張廣輝;神經(jīng)元突觸可塑性的細胞信號轉(zhuǎn)導網(wǎng)絡動力學研究[D];浙江師范大學;2012年
6 李曉麗;高頻重復經(jīng)顱磁刺激對老齡小鼠突觸可塑性相關基因的影響[D];河北醫(yī)科大學;2013年
7 高楊;非動作電位依賴的突觸前后配對刺激誘導大鼠視皮層突觸可塑性的研究[D];天津醫(yī)科大學;2010年
8 李穎;應激對前額葉皮層、丘腦突觸可塑性的影響[D];山東師范大學;2014年
9 陳云芝;基于突觸可塑性的神經(jīng)信息傳遞的模型構(gòu)建及仿真分析[D];河北工業(yè)大學;2014年
10 彭志勇;mTOR信號通路在神經(jīng)病理疼痛大鼠脊髓背角突觸可塑性的作用[D];中南大學;2010年
,本文編號:1923938
本文鏈接:http://sikaile.net/xiyixuelunwen/1923938.html