天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 論文百科 > 碩士論文 >

土壤微生物學(xué)特性對土壤健康的指示作用

發(fā)布時間:2016-11-14 11:37

  本文關(guān)鍵詞:土壤微生物學(xué),由筆耕文化傳播整理發(fā)布。


當(dāng)前位置:首頁 >> 生物學(xué) >> 土壤微生物學(xué)特性對土壤健康的指示作用


生物多樣性

2007, 15 (2):162-171

doi: 10.1360/biodiv.060290 http: //www.biodiversity-science.net

Biodiversity Science

土壤微生物學(xué)特性對土壤健康的指示作用
周麗霞* 丁明懋(中國科學(xué)院華南植物園, 廣州 510650)

摘要: 土壤健康是陸地生態(tài)系統(tǒng)可持續(xù)發(fā)展的基礎(chǔ)。作者通過概述土壤微生物學(xué)特性(土壤微生物群落結(jié)構(gòu)、土壤 微生物生物量、土壤酶活性)與土壤質(zhì)量的關(guān)系, 闡明了土壤微生物對土壤健康的生物指示功能。研究表明: 土壤 中細菌、真菌和放線菌的組成及其所占比率在一定程度上反映了土壤的肥力水平: 在土壤性質(zhì)和肥水條件較好的 土壤中, 細菌所占比率較高。土壤微生物生物量與土壤有機質(zhì)含量密切相關(guān), 而且土壤微生物生物量碳與土壤有 機碳的比值(Cmic : Corg)和土壤微生物代謝熵(qCO2)的變化在一定程度上反映了土壤有機碳的利用效率。一般情況 下, 土壤酶活性高的土壤中, 土壤微生物生物量碳、 氮含量也高。 因此, 土壤微生物學(xué)特性可以反映土壤質(zhì)量的變 化, 并可用作評價土壤健康的生物指標(biāo)。 關(guān)鍵詞: 土壤微生物群落結(jié)構(gòu), 微生物生物量, 土壤健康, 生物指示

Soil microbial characteristics as bioindicators of soil health
Lixia Zhou*, Mingmao Ding
South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650

Abstract: Soil health is important for the sustainable development of terrestrial ecosystem. In this review, we summarizes the relationship between soil quality and soil microbial characteristics such as soil microbial community structure, soil microbial biomass and soil enzymatic activity in order to illustrate the function of soil microbial characteristics as bio-indicators of soil health. Many studies have showed that the soil nutrient is correlated with the quantity or the composition of bacteria, fungi and actinomycetes in soils. In general, higher ratio of soil bacteria indicates better soil quality and higher soil nutrient content. Soil microbial biomass is closely correlated with soil organic carbon, and the ratios of soil microbial biomass carbon to soil organic carbon(Cmic : Corg) and microbial metabolic quotient (qCO2) reflect the use efficiency of soil organic C. The activity of soil enzymes are positively correlated with soil microbial biomass carbon and nitrogen. Therefore, soil microbial characteristics reflect the changes of soil quality and thus can be used as bio-indicators of soil health. Key words: soil microbial community structure, soil microbial biomass, soil health, bio-indicator

土壤微生物是土壤生態(tài)系統(tǒng)的重要組份之一, 幾乎所有的土壤過程都直接或間接地與土壤微生 物有關(guān)。在土壤生態(tài)系統(tǒng)中土壤微生物的作用主要 體現(xiàn)在: (1) 分解土壤有機質(zhì)和促進腐殖質(zhì)形成 (Vossbrinck et al., 1979; 許光輝等, 1984; Scholle et al., 1992; 李越中等, 1992; Cortez & Bouché, 2001); (2) 吸收、 固定并釋放養(yǎng)分, 對植物營養(yǎng)狀況的改善 和調(diào)節(jié)有重要作用 (婁隆厚, 1962; Singh et al.,

1989; 李阜棣, 1993; Roy & Singh, 1994); (3) 與植 物共生促進植物生長, 如豆科植物的結(jié)瘤固氮 (Allen & Allen, 1981; Vincent, 1982; 李慶逵, 1989) 和植物菌根的形成(蟻偉民等, 1990; Heckman et al., 2001; Lutzoni et al., 2001); (4) 在土壤微生物的作用 下, 土壤有機碳、氮不斷分解, 是土壤微量氣體產(chǎn) 生的重要原因(Smith et al., 2003; 韓興國和王智平, 2003); (5) 在有機物污染和重金屬污染治理中起重

—————————————————— 收稿日期: 2006-11-23; 接受日期: 2007-01-10 基金項目: 國家自然科學(xué)基金重點項目(30630015)、中國科學(xué)院方向性項目(KZCX2-YW-413)和中國科學(xué)院“百人計劃”項目 * 通訊作者 Author for correspondence. E-mail: zhoulx@scib.ac.cn

第2期

周麗霞和丁明懋: 土壤微生物學(xué)特性對土壤健康的指示作用

163

要作用(Boopathy, 2000)。另外, 土壤微生物特性對 土 壤 基 質(zhì) 的 變 化 敏 感 (Powlson et al., 1987; Chander et al., 1998; Dilly & Munch, 1998), 其群落 結(jié)構(gòu)組成和生物量等可以反映土壤的肥力狀況。因 為土壤微生物特性與土壤質(zhì)量的關(guān)系密切(Doran et al., 1994; Dilly & Munch, 1998), 所以, 近年來將土 壤微生物群落結(jié)構(gòu)組成、土壤微生物生物量、土壤 酶活性等作為土壤健康的生物指標(biāo)來評價退化生 態(tài)系統(tǒng)的恢復(fù)進程和指導(dǎo)生態(tài)系統(tǒng)管理等已逐漸 成為研究熱點(Dilly & Munch, 1998; van Bruggen & Semenov, 2000; Harris, 2003; Schloter et al., 2003; Bossio et al., 2006)。本文中主要通過概述土壤微生 物群落結(jié)構(gòu)、土壤微生物生物量、土壤酶活性與土 壤質(zhì)量的關(guān)系, 闡明它們對土壤健康的生物指示功 能。

以反映出一個受損生態(tài)系統(tǒng)的受損程度或恢復(fù)潛 力 (Diaz-Ravina et al., 1988; Hernot & Robertson, 1994; Dilly & Munch, 1998)。 一般來說, 土壤退化或 受損對土壤微生物的數(shù)量及種類產(chǎn)生的是負面影 響, 但某些耐性微生物種類在被污染土壤中的數(shù)量 反而增加(Paoletli, 1997; 滕應(yīng)等, 2003)。劉世貴等 (1994)對川西北退化草地土壤微生物區(qū)系的研究發(fā) 現(xiàn), 退化程度高的草地中微生物種類與數(shù)量減少; 不同退化程度的草地中土壤微生物主要類群在數(shù) 量上有較大差異, 起主導(dǎo)作用的微生物種類也有所 不同。 除此之外, 在自然界中存在著種類繁多的某些 特殊的土壤微生物類群, 它們可作為特殊的指示生 物。如在地下有油氣藏的地表土壤中會存在特定種 類的細菌——烴類氧化菌, 它們會隨著烴滲漏濃度 的升高而增多。因此, 可利用這些烴類氧化菌作為 指示來尋找油氣礦藏(金文標(biāo)等, 2002)。王紅梅等 (2002)通過提取金礦化區(qū)和非礦化區(qū)第四紀土壤微 生物蠟樣芽孢桿菌進行微生物與金離子的相互作 用實驗證實, 當(dāng)金含量升高到一定范圍時, 可以對 Bacillus cereus的生長產(chǎn)生抑制作用, 促使其由營養(yǎng) 體向芽孢轉(zhuǎn)化, 使礦化區(qū)土壤芽孢計數(shù)值顯著增 高。這一發(fā)現(xiàn)對尋找金礦具有指導(dǎo)意義。 1.2 磷脂脂肪酸分析法(PLFA)在土壤微生物群落 棲息在土壤中的微生物種類繁多, 傳統(tǒng)的分析 方法只能觀察到不到5%的微生物群落(Coleman & Crossley Jr, 1996; Joseph et al., 2003), 而且絕大多 數(shù)的土壤微生物種類無法培養(yǎng)出來(Amann et al., 1995)。 這給土壤微生物數(shù)量、 組成和生態(tài)分布的測 定帶來了很多困難。所以新的方法被陸續(xù)引入土壤 微生物分析中, 如微平板法(BIOLOG)、 變性梯度凝 膠電泳法(DGGE)、脂肪酸甲酯(FAME)分析、磷脂 脂 肪 酸 (PLFA) 分 析 等 近 年 來 得 到 廣 泛 應(yīng) 用 (Haack et al., 1994; 楊元根等, 2002)。 在分析土壤中微生物群落結(jié)構(gòu)的變化時, PLFA方法與BIOLOG方法相比更敏感, 反映的信 息更多, 標(biāo)準偏差更小(Ibekwe & Kennedy, 1998), 也可以克服FAME方法在分析不同屬間的微生物時 有可能發(fā)生重疊的不足(Green & Scow, 2000), 與 DGGE相比, PLFA方法具有可以估測土壤微生物生 物量、容易將細菌和真菌類群分開、分析費用相對 結(jié)構(gòu)研究中的應(yīng)用

1

土壤微生物群落結(jié)構(gòu)與土壤質(zhì)量
土壤微生物群落結(jié)構(gòu)主要指土壤中各主要微

生物類群(包括細菌、真菌、放線菌等)在土壤中的 數(shù)量以及各類群所占的比率, 其結(jié)構(gòu)和功能的變化 與土壤理化性質(zhì)的變化有關(guān)。 土壤的結(jié)構(gòu)、 通氣性、 水分狀況、養(yǎng)分狀況等對土壤微生物均有重要影響 (Noah et al., 2003)。 1.1 與土壤理化性質(zhì)的關(guān)系 研究發(fā)現(xiàn), 在熟化程度高和肥力好的土壤中, 土壤微生物的數(shù)量較多, 細菌所占的比例較高; 而 在干旱及難分解物質(zhì)較多的土壤中, 土壤微生物總 數(shù)較少, 細菌所占比率相對較低, 而真菌和放線菌 的比率相對較高(曹正邦和樊慶笙, 1957; 許光輝等, 1984; 蟻偉民等, 1984; 陳泰雄等, 1990; Albiach et al., 2000)。如在郁閉度較高的鼎湖山闊葉林中, 由 于土壤地表凋落物較多, 土壤中細菌所占的比率要 比同一地區(qū)的針葉林高66–126% (蟻偉民等, 1984)。 Ovreas和Torsvik(1998)用多種方法測定了土壤微生 物群落結(jié)構(gòu), 發(fā)現(xiàn)富含有機質(zhì)的土壤中微生物多樣 性高于砂土。Griffiths等 (1999) 研究發(fā)現(xiàn), 向土壤 中施加含碳量高的物質(zhì)能使土壤微生物群落中真 菌和革蘭氏陰性細菌的比例提高, 而使放線菌和革 蘭氏陽性菌的比例降低。 土壤退化或受損會影響到土壤微生物的多樣 性 (Kurakov, 1998)。土壤微生物數(shù)量、種類及其組 成會隨土壤受污染與退化的程度發(fā)生變化, 由此可

164

生 物 多 樣 性 Biodiversity Science

第 15 卷

較低等優(yōu)點。但是至目前為止PLFA方法在我國的 應(yīng)用還十分有限。 因此, 本文中將對PLFA方法作特 別介紹, 希望它能在我國的微生物群落研究中得到 更好的應(yīng)用。 1.2.1 PLFA的命名 磷脂脂肪酸(phospholipid fatty acids, PLFA)是 活體微生物細胞結(jié)構(gòu)的重要組成成分, 不同類群的 微生物通過不同的生化途徑合成不同的PLFA。因 此這一指標(biāo)可較準確地表達土壤微生物的類群及 其生物量(Zelles, 1999)。PLFA已被廣泛用作分析微 生物群落結(jié)構(gòu)和微生物生物量的生物標(biāo)記, 在土壤 微生物分析中越來越多地被采用。 PLFA一般以總碳數(shù)∶雙鍵數(shù)和雙鍵距離分子 末端的位置來命名, c和t分別表示順式和反式, i和a 分別表示支鏈的異構(gòu)和反異構(gòu), 10Me表示一個甲 基團在距分子末端第10個碳原子上, cy表示環(huán)丙烷 脂肪酸等。已有的研究結(jié)果發(fā)現(xiàn), 大多數(shù)細菌含有 飽和或單不飽和的以酯鍵連接到丙三醇的脂肪酸, 如 : i15:0, a15:0, 15:0, 16:1ω5, i17:0, 17:0, 18:1ω7(Tunlid & White, 1992); 革蘭氏陽性細菌含 有多支鏈的脂肪酸, 如: i13:0, a13:0, i14:0, i15:0, a15:0, i16:0, i17:0, a17:0; 革蘭氏陰性細菌含有單不 飽 和 脂 肪 酸 , 如 : 14:1ω5c, 15:1ω6c, 16:1ω7c, 16:1ω7t, 16:1ω5c, 18:1ω9c, 18:1ω7c, 18:1ω7t(Bossio et al., 2006); 真菌含有特殊的脂肪酸, 如: 18:2ω6c, 18 :3ω6c, 18: 3ω3c (Frostegard & B??th, 1996); 而 含有側(cè)鏈甲基的脂肪酸, 如: 10Me18:0, 16Me16:0 和10Me18:0等則可用于放線菌生物量的估算(Kieft et al., 1994; Bossio et al., 2006)。 1.2.2 PLFA對土地利用方式/環(huán)境變化的指示 PLFA 對 土 地 利 用 方 式 的 改 變 十 分 敏 感 。 Steenwerth等(2002)分析了美國加州2個沿海流域9 種不同土地利用方式下的土壤微生物群落結(jié)構(gòu), 發(fā) 現(xiàn)在不同的土地利用方式以及不同的土壤性質(zhì)與 管理方式下, 土壤微生物群落PLFA明顯不同: 草 地中的土壤碳、氮和微生物PLFA總量均比耕作的 土地高; 土壤微生物群落組成受土壤有機質(zhì)變化的 影 響 且 與 PLFA 總 量 密 切 相 關(guān) 。 Hedlund(2002) 用 PLFA分析表明, 種植了植物的農(nóng)業(yè)廢棄地在向天 然草地或森林群落演替的過程中, 種植管理方式下 的土壤與自然恢復(fù)的土壤相比, 前者促進了細菌群 落的增加 以及微生物活性與生物量的提高。

Rajendran等(1992)通過測定C10 到C24 共63種脂肪酸 發(fā)現(xiàn): 在富營養(yǎng)化的海岸沉積物中微生物生物量變 異較大, 分布不均; 沿海地區(qū)的微生物生物量明顯 高于休閑的海灘, 其不飽和脂肪酸與長鏈脂肪酸比 例較低, 代表細菌的脂肪酸比例較高, 并且與厭氧 和需氧細菌有相關(guān)性。Yao等(2001)應(yīng)用PLFA分析 了8個不同肥力水平和種植歷史的紅壤中微生物群 落結(jié)構(gòu), 發(fā)現(xiàn)PLFA總量與土壤有機碳、總氮、微生 物生物量碳和基礎(chǔ)呼吸均呈顯著正相關(guān); 土地種植 歷史、植被類型和作物栽培方式對土壤微生物群落 結(jié)構(gòu)有很大影響。Bunemann等(2004)研究了肯尼亞 2種作物的輪作與施磷肥對土壤微生物群落結(jié)構(gòu)的 影響, 發(fā)現(xiàn)在輪作系統(tǒng)中, 高水平的土壤有機質(zhì)、 土壤微生物生物量與高數(shù)量的PLFA有關(guān), 并且真 菌和革蘭氏陰性細菌的豐富度也有增長, 而施磷肥 對 微 生 物 群 落 結(jié) 構(gòu) 的 影 響 不 大 。 Bossio 和 Scow(1998)發(fā)現(xiàn)在灌溉條件下單不飽和脂肪酸的豐 富度會減少。在恢復(fù)的濕地土壤中的支鏈脂肪酸的 豐富度明顯高于管理下的農(nóng)業(yè)土壤, 而在兩種土壤 中單不飽和脂肪酸(即革蘭氏陰性細菌)的豐富度都 會隨土壤深度增加而減少(Bossio et al., 2006)。 在受到污染的土壤中, 微生物群落結(jié)構(gòu)也會 發(fā)生變化。Kelly等(1999)的研究表明, 受污染土壤 中指示菌根真菌和放線菌的PLFA相對含量下降。 Frostegard 等 (1993) 認 為 在 重 金 屬 污 染 的 土 壤 中 10 10Me16∶0、 Me 17∶0 、 Me 18∶0的變化, 可 10 以反映出放線菌生物量的增加與減少。Wiemken等 (2001)用PLFA方法分析了CO2濃度升高與氮富集對 山毛櫸–云杉(Fagus silvatica–Picea abies)生態(tài)系統(tǒng) 中土壤微生物群落的影響, 發(fā)現(xiàn)CO2濃度升高時在 氮富集的土壤中真菌生物量明顯增加, 且長時間超 過細菌而占統(tǒng)治地位。 1.2.3 PLFA與地表植被類型的關(guān)系 土壤植被類型的變化也會影響到土壤微生物 的變化。Kourtev等 (2002) 通過分離99種不同的 PLFA發(fā)現(xiàn), 在新澤西北部闊葉林中引進外來種后, 由于改變了原有植物的根系生長以及地表凋落物 等, 土壤微生物群落結(jié)構(gòu)發(fā)生了明顯改變。Saetre 和Bath(2000)研究了挪威云杉(Picea abies)和樺樹 (Betula pubescens)混交林中土壤微生物群落的空間 差異, 結(jié)果表明, 云杉比樺樹對PLFA的影響更大; 造成這一差異的原因除了兩個樹種的土壤濕度和

第2期

周麗霞和丁明懋: 土壤微生物學(xué)特性對土壤健康的指示作用

165

地面植被不同以外, 更大程度上與其土壤有機質(zhì)含 量的差異相關(guān)。

壤微生物代謝熵(即土壤微生物基礎(chǔ)呼吸與土壤微 生物生物量之間的比值, qCO2)等也被用作土壤性 質(zhì)或健康的生物指標(biāo)。 研究發(fā)現(xiàn), Cmic : Corg比值的變化可以反映土壤 有機碳的動態(tài)。如果以成熟森林的Cmic : Corg比值為 參照值, 那么當(dāng)Cmic : Corg比值高于參照值時, 可認 為土壤中有機碳處于積累階段; 反之則反映了土壤 有機質(zhì)處于消耗階段(Insam et al., 1989; Ding et al., 1992; 蟻偉民等, 1995)。 土壤微生物代謝熵(qCO2)則將微生物生物量的 大小與微生物的生物活性和功能有機地聯(lián)系起來, 可對微生物的能量利用效率進行度量(Wardle & Ghani, 1995)。qCO2的變化與土壤微生物群落組成 的變化有關(guān), 并且隨土壤熟化程度的增加而逐漸減 小(Insam & Domsch, 1988; Insam & Haselwandter, 1989)。Ding等 (1992) 認為, qCO2伴隨著生態(tài)系統(tǒng) 由初級向高級的演替而呈現(xiàn)下降趨勢, 在qCO2 較 低的土壤中微生物對碳的利用效率較高, 維持相同 微生物生物量所需的能量就少, 土壤質(zhì)量也越好。 2.2 與地表植被/土地利用方式的關(guān)系 土壤微生物生物量與地表植被類型關(guān)系密切。 姜培坤和周國模(2003)發(fā)現(xiàn)闊葉林下土壤微生物生 物量碳、氮均明顯高于杉木林, 不同植被下土壤微 生物生物量碳∶氮比率的不同決定于凋落物與根 際物質(zhì)分解過程中誘導(dǎo)形成的微生物區(qū)系的差異; 杉木的長期生長會使林地和根際土壤生物學(xué)特性 改變, 土壤微生物生物量碳降低。杉木林地土壤微 生物生物量碳與土壤有機質(zhì)、全氮、全磷、全鉀、 水解氮、有效磷含量和陽離子交換量均呈顯著或極 顯著相關(guān)(姜培坤等, 2002)。張海燕等(2006)對不同 利用方式的19個黑土樣品的微生物生物量和養(yǎng)分 狀況進行了分析, 結(jié)果表明土壤微生物生物量和土 壤養(yǎng)分含量大體上都呈現(xiàn)出林地>大豆地>玉米地 的趨勢, 同時土壤微生物生物量與土壤有機質(zhì)、全 氮、全磷、速效鉀呈現(xiàn)出顯著或極顯著正相關(guān)關(guān)系, 并且土壤微生物的生物量碳比生物量氮更為靈敏。 Imberger 和 Chiu(2001)研究了臺灣亞高山針葉林 與草地土壤中的細菌與真菌生物量, 發(fā)現(xiàn)森林土壤 中的細菌與真菌生物量明顯高于草地。 Wardle(1995)注意到免耕條件有利于土壤有機碳和 有機氮的積累, 免耕土壤中細菌和真菌的生物量均 較高; 而耕作活動加速了土壤微生物對有機質(zhì)的消

2

土壤微生物生物量與土壤質(zhì)量
土壤微生物生物量是土壤有機質(zhì)中有生命的

部分, 它的大小反映了參與調(diào)控土壤中能量和養(yǎng)分 循環(huán)以及有機物質(zhì)轉(zhuǎn)化的微生物數(shù)量(Arunachalam et al., 1999; Taylor et al., 2002)。 通常情況下, 土壤微 生物生物量與土壤有機碳含量關(guān)系密切: 土壤碳含 量高, 土壤微生物生物量也相應(yīng)較高(Jenkinson & Powlson, 1976; Insam & Domsch, 1988; Ding et al., 1992)。由于土壤微生物生物量碳、氮能夠敏感且及 時地反映或預(yù)示土壤的變化, 因而被越來越多地用 作土壤質(zhì)量的生物指示指標(biāo)(余慎等, 1999; 任天志 和Stefano, 2000)。 2.1 對土壤健康狀況的指示 土壤微生物生物量可以敏感地反映出不同土 壤生態(tài)系統(tǒng)間的差異。Luizao等(1992) 發(fā)現(xiàn), 草地 或林地開墾為耕地后會導(dǎo)致土壤微生物生物量的 下降, 這可能是由于耕作使土壤有機物很快分解, 進而土壤微生物活性降低。陳國潮和何振立(1998) 發(fā)現(xiàn)在不同利用方式下, 高度風(fēng)化的酸性紅壤中微 生物生物量碳普遍較低, 且與土壤有機質(zhì)之間有較 明顯的相關(guān)性。Chander等(1998)的研究表明, 造林 可以改進土壤有機質(zhì)狀態(tài), 增加土壤營養(yǎng)庫與微生 物活性。Carter (1986)和Sarathchandra等(1989)研究 發(fā)現(xiàn)免耕或施用有機肥可使土壤表層微生物生物 量增加。傅聲雷等(1995)在廣東鶴山“林、果、草、 魚”復(fù)合生態(tài)系統(tǒng)中的研究也得出, 受施肥的影響, 果園土壤微生物生物量要明顯高于林、草、魚等子 系統(tǒng)。但Lee和Jose (2003)發(fā)現(xiàn)施用氮肥可導(dǎo)致棉白 楊(cottonwood) 和火炬松(loblolly pine)土壤微生物 生物量降低。Stark等(2007)發(fā)現(xiàn)施肥或不施肥對土 壤微生物特性沒有明顯影響, 但管理方式的不同對 微生物生物量有影響, 表明作物輪作與植被類型對 土壤微生物生物量及酶活性的影響大于施肥。 此外, 土壤微生物對土壤中有害物質(zhì)如重金屬、農(nóng)藥、酸 害、除草劑等反應(yīng)敏感, 因此可借助土壤微生物生 物量的分析診斷土壤環(huán)境的健康狀況(Perucci et al., 2000) 。 在指示土壤過程或土壤健康狀況時, 土壤微生 物生物量碳與土壤有機碳的比值(即Cmic : Corg)和土

166

生 物 多 樣 性 Biodiversity Science

第 15 卷

耗, 使得土壤有機碳、氮含量低于免耕土壤, 同時 其土壤中的微生物數(shù)量和生物量也顯著減少。 2.3 微生物生物量的測定 由于土壤微生物生物量的測定很重要但又具 有一定的難度, 因此人們一直在不斷改進測定方 法。現(xiàn)在通用的氯仿熏蒸提取法(CFE)(Vance et al., 1987)就是在氯仿熏蒸培養(yǎng)法(Jenkinson & Powlson, 1976)的基礎(chǔ)上發(fā)展而來的。Leckie等(2004)用氯仿 熏蒸提取法、PLFA法與DNA分析法分別研究了森 林腐殖質(zhì)與礦區(qū)的土壤微生物生物量, 發(fā)現(xiàn)PLFA 與CFE方法的分析結(jié)果之間有很好的相關(guān)性(R = 0.96), 即1 nmol PLFA相當(dāng)于用氯仿熏蒸法從腐殖 質(zhì)中釋放出來3.2 μg C 或從礦質(zhì)土壤中釋放出2.4 μg C。但這兩種方法的結(jié)果與DNA濃度之間的關(guān)系 不明顯。Bailey(2002)的研究也發(fā)現(xiàn), PLFA與CFE方 法之間存在較好的相關(guān)性( R = 0.77)。隨著土壤微 生物分析方法的不斷改進, 土壤微生物生物量作為 土壤健康狀況的指示作用將被更廣泛地應(yīng)用。
2 2

生 物 平 板 計數(shù) 法 之 間 的關(guān) 系 不 明 顯。 周 禮 愷 等 (1983)觀察到在黑土、草甸黑土和棕壤中土壤酶是 以酶—有機質(zhì)復(fù)合體的形式存在, 其中絕大部分酶 都和土壤腐殖質(zhì)及土壤碳、氮狀況顯著相關(guān)。一般 認為, 脲酶、脫氫酶、蛋白酶、磷酸酶和纖維素酶 的活性與微生物生物量有較密切的關(guān)系, 會隨著微 生物生物量的增加而不斷增強, 能夠表征土壤碳、 氮、磷等養(yǎng)分的循環(huán)狀況(Tiwari et al., 1989; Mersi & Schinner, 1991; 郭繼勛等, 1997)。 3.2 與土壤肥力的關(guān)系 施肥處理有利于改善土壤理化性質(zhì)和微生物 區(qū) 系 , 使 土 壤 微 生 物 數(shù) 量 增 加 (Albiach et al., 2000), 并使土壤轉(zhuǎn)化酶、磷酸酶、葡聚糖酶、過氧 化物酶和脲酶活性提高(Bandick & Dick, 1999)。邱 莉萍等(2004)通過長期定位試驗地中土壤養(yǎng)分和酶 活性的測定發(fā)現(xiàn), 有機質(zhì)、全氮、全磷、堿解氮、 速效磷與脲酶、堿性磷酸酶活性呈顯著或極顯著相 關(guān); 而蔗糖酶、多酚氧化酶與所有肥力因素相關(guān)性 均不顯著; 耕種和不同的施肥方式均能提高土壤養(yǎng) 分的含量, 明顯地改善土壤酶的活性, 其中對土壤 脲酶和磷酸酶活性影響明顯(邱莉萍等, 2003)。 高瑞 和呂家瓏 (2005) 發(fā)現(xiàn), 施肥后作物根系及其分泌 物具有刺激土壤酶活性的作用, 使土壤脲酶、堿性 磷酸酶、轉(zhuǎn)化酶和過氧化氫酶活性均明顯提高, 且 土壤酶活性高低與作物產(chǎn)量相關(guān)性顯著。杜紅霞等 (2006) 的 研 究 表 明 , 施 氮 肥 使 云 南 松 (Pinus yunnanensis)林地和糙皮樺(Betula utilis)林地土壤脲酶、 過氧化氫酶和蔗糖酶活性較對照有不同程度的提 高。 3.3 與土地利用方式和污染的關(guān)系 土壤酶對因環(huán)境或管理因素引起的變化較敏 感, 并具有較好的時效性特點。在退化土壤中土壤 微生物生物量以及β-葡萄糖甘酶、磷酸單脂酶、蛋 白酶、過氧化氫酶等酶活性降低; 而在輪作方式下, 這幾種酶的活性常高于單作方式(Miller & Dick, 1995)。劉夢云等(2006)對不同土地利用方式下土壤 酶活性特征的研究結(jié)果表明, 土壤蔗糖酶、脲酶和 堿性磷酸酶活性均與速效氮及有機質(zhì)呈極顯著正 相關(guān), 且在天然草地表層土壤酶活性較高, 灌木林 地和人工草地次之, 果園和農(nóng)地較低。 在受污染或退化的生態(tài)系統(tǒng)中, 隨著土壤有機 質(zhì)含量的降低和土壤微生物生物量的減少, 土壤酶

3

土壤酶活性與土壤質(zhì)量
土壤酶是一種生物催化劑, 主要來源于土壤微

生物和植物根系的分泌物及動植物殘體分解釋放 的酶, 包括氧化還原酶類、水解酶類、裂合酶類和 轉(zhuǎn)移酶類等。由于土壤的生物和生物化學(xué)過程受控 于酶的活性, 因此土壤酶活性反映了土壤中各種生 物化學(xué)過程的強度和方向。隨著對土壤酶活性與土 壤性質(zhì)關(guān)系的深入了解和土壤酶學(xué)理論與體系的 逐漸完善 (Burns & Dick, 2001), 土壤酶的專一性、 易測定性和綜合性等特點使其有可能成為一個有 潛力的土壤生物指示指標(biāo)(Dick, 1994; Kandeler et al., 1999)。 3.1 與土壤微生物類群的關(guān)系 研究表明, 活體微生物對土壤酶的影響相當(dāng) 大。特定的土壤酶活性與細菌和真菌類群密切相關(guān) (Aon & Colaneri, 2001)。 土壤微生物數(shù)量, 尤其是土 壤細菌的豐富度與土壤磷酸單酯酶、β-葡聚糖酶、 脫 氫 酶 和 FDA 水 解 酶 等 酶 活 性 呈 顯 著 正 相 關(guān) (Taylor et al., 2002)。Frankenberger 和 Dick(1983) 研究了10種土壤中的11種酶, 評價了它們與土壤呼 吸、微生物生物量、平板計數(shù)以及土壤其他屬性之 間的關(guān)系, 發(fā)現(xiàn)堿性磷酸酶、酰胺酶和過氧化氫酶 與微生物呼吸及生物量之間存在密切聯(lián)系, 但與微

第2期

周麗霞和丁明懋: 土壤微生物學(xué)特性對土壤健康的指示作用

167

的活性也會降低(龍章富和劉世貴, 1995; Caldwell et al., 1999)。羅虹等(2006)采用回歸正交設(shè)計方案 研究了Cd、Cu、Ni復(fù)合污染對6種土壤酶(脲酶、轉(zhuǎn) 化酶、蛋白酶、磷酸酶、過氧化氫酶、脫氫酶)活性 的影響, 結(jié)果表明6種酶活性與3種重金屬復(fù)合污染 之間均呈顯著或極顯著的相關(guān)關(guān)系; 但3種重金屬 復(fù)合污染對不同土壤酶活性的影響各有不同, 差異 顯著。王友保等(2003)對銅官山銅尾礦庫土壤酶活 性的研究表明, 脲酶、蔗糖酶、過氧化氫酶的酶活 性和尾礦庫的植被狀況具有較強的相關(guān)性。

4

結(jié)語
土壤微生物的研究很大程度上受研究方法的

限制。從傳統(tǒng)的平板培養(yǎng)計數(shù)法發(fā)展到與生物化 學(xué)、生理學(xué)和分子生物學(xué)相結(jié)合的方法, 對微生物 群落結(jié)構(gòu)、種類與數(shù)量的研究起到了明顯的推動作 用。但由于土壤微生物種類繁多, 生存狀況復(fù)雜, 加上微生物本身個體微小, 結(jié)構(gòu)簡單, 缺乏可以區(qū) 分的明顯特征, 因此任何一種分析方法都有其局限 性, 不可能盡善盡美地完成人們對復(fù)雜的土壤微生 物的認識, 目前的研究及其結(jié)果還遠不能說明土壤 微生物的實際情況。但比較而言, 在研究土壤微生 物的群落結(jié)構(gòu)方面, PLFA方法具有其他方法不可 替代的優(yōu)點。 由于土壤微生物學(xué)特性可以反映土壤質(zhì)量的 變化, 并可用作評價土壤健康的生物指標(biāo), 相信隨 著實驗分析手段的不斷改進與創(chuàng)新, 對土壤微生物 種類、群落結(jié)構(gòu)及其功能群的認識將會不斷擴展和 深入, 作為評價土壤健康的土壤微生物學(xué)指標(biāo)也會 更精確和更優(yōu)化, 最終為陸地生態(tài)系統(tǒng)管理及其可 持續(xù)發(fā)展提供更好的科學(xué)依據(jù)。 參考文獻
Albiach R, Canet R, Pomanes F, Ingelmo F (2000) Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil. Bioresource Technology, 75, 43–48. Allen ON, Allen EK (1981) The Leguminosae: A Source Book of Characterisitics, Uses and Nodulation. The University of Wisconsin Press, Wisconsin. Amann R, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology Reviews, 59, 143–149. Aon MA, Colaneri AC (2001) Temporal and spatial evolution of enzymatic activities and physico-chemical properties in

an agricultural soil. Applied Soil Ecology, 18, 255–270. Arunachalam K, Arunachalam A, Melkania NP (1999) Influence of soil properties on microbial populations, activity and biomass in humid subtropical mountainous ecosystems of India. Biology and Fertility of Soils, 30, 217–223. Bailey VL, Peacock AD, Smith JL, Bolton Jr H (2002) Relationships between soil microbial biomass determined by chloroform fumigation-extraction, substrate-induced respiration, and phospholipids fatty acid analysis. Soil Biology and Biochemistry, 34, 1385–1389. Bandick AK, Dick RP (1999) Field management effects on soil enzyme activities. Soil Biology and Biochemistry, 31, 1471–1479. Boopathy R (2000) Factors limiting bioremediation technologies. Bioresource Technology, 74, 63–67. Bossio DA, Fleck JA, Scow KM, Fujii R (2006) Alteration of soil microbial communities and water quality in restored wetlands. Soil Biology and Biochemistry, 38, 1223–1233. Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecology, 35, 265–278. Bunemann EK, Bossio DA, Smithson PC, Frossard E, Oberson A (2004) Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biology and Biochemistry, 36, 889–901. Burns RG, Dick RP (2001) Enzymes in the Environment: Ecology, Activity and Applications. Marcel Dekker, Inc., New York. Caldwell BA, Griffiths RP, Sollins P (1999) Soil enzyme response to vegetation disturbance in two lowland Costa Rican. Soil Biology and Biochemistry, 31, 1603–1608. Cao ZB (曹正邦), Fan QS (樊慶笙) (1957) Preliminary studies on the effect of fertilization for the properties of microorganisms in red soil areas. Acta Pedologica Sinica (土壤學(xué) 報), 5, 206–214. (in Chinese with English abstract) Carter MR (1986) Microbial biomass as an index for tillageinduced changes in soil biological properties. Soil and Tillage Research, 7, 29–40. Chander K, Goyal S, Nandal DP, Kapoor KK (1998) Soil organic matter, microbial biomass and enzyme activities in a tropical agroforestry system. Biology and Fertility of Soils, 27, 168–172. Chen GC (陳國潮), He ZL (何振立) (1998) Study on soil microbial biomass in red soil utilized by different ways. Chinese Journal of Soil Science (土壤通報), 29, 276–278. (in Chinese with English abstract) Chen TX (陳泰雄), Ding MM (丁明懋), Yi WM (蟻偉民), Liao LY (廖蘭玉) (1990) Characteristics of soil microbiology under different vegetations in Heshan downland interdisciplinary experimental station. Tropical and Subtropical Forest Ecosystem (熱帶亞熱帶森林生態(tài)系統(tǒng)研 究), 7, 35–40. (in Chinese with English abstract)

168

生 物 多 樣 性 Biodiversity Science

第 15 卷

Coleman DC, Crossley DA Jr (1996) Fundamentals of Soil Ecology. Academic Press, San Diego. Cortez J, Bouché M (2001) Decomposition of Mediterranean leaf litters by Nicodrilus meridionalis (Lumbricidae) in laboratory and field experiments. Soil Biology and Biochemistry, 33, 2023– 2035. Diaz-Ravina M, Caraballas T, Acea MJ (1988) Microbial biomass and activity in four acid soils. Soil Biology and Biochemistry, 20, 817–823. Dick RP (1994) Soil enzyme activities as indicators of soil quality. In: Defining Soil Quality for a Sustainable Environment (eds Doran JW, Coleman DC, Bezdicek DF, Stewart BA), pp. 107–124. Soil Science Society of America, Madison. Dilly O, Munch JC (1998) Ratios between estimates of microbial biomass content and microbial activity in soils. Biology and Fertility of Soils, 27, 374–379. Ding MM, Yi WM, Liao LY, Martens R, Insam H (1992) Effects of afforestation on microbial biomass and activity in soils of tropical China. Soil Biology and Biochemistry, 24, 865–872. Doran JW, Coleman DC, Bezdicek DF, Stewart BA (1994) Defining Soil Quality for a Sustainable Environment, pp. 3–234. Soil Society of America Special Publication. Madison, Wisconsin. Du HX (杜紅霞), Liu ZW (劉增文), Pan KW (潘開文), Gao XB (高祥斌), Zhang LP (張麗萍), Gao WJ (高文俊) (2006) Effects of external source C, N disturbances on enzymes activities of forest soil. Journal of Northwest Forestry University (西北林學(xué)院學(xué)報), 21, 35–38. (in Chinese with English abstract) Frankenberger WT Jr, Dick WA (1983) Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Science Society of America, 47, 945–951. Frostegard A, Baath E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 22, 59–65. Frostegard A, Tunlid A, B??th E (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Applied and Environmental Microbiology, 59, 3605–3617. Fu SL (傅聲雷), Yi WM (蟻偉民), Ding MM (丁明懋), Yu ZY (余作岳) (1995) Nutrient dynamics of soil microbes for the ecosystems of forest, orchard, grassland and fish ponds. Acta Ecologica Sinica (生態(tài)學(xué)報), 15 (Suppl. A), 148–155. (in Chinese with English abstract) Gao R (高瑞), Lu JL (呂家瓏) (2005) Study on the enzyme activities and fertility change of soils by a long-term located utilization of different fertilizers. Chinese Journal of Eco-Agriculture (中國生態(tài)農(nóng)業(yè)學(xué)報), 13, 143–145. (in Chinese with English abstract) Green CT, Scow KM (2000) Analysis of phospholipid fatty acids (PLFA) to characterize microbial communities in

aquifers. Hydrogeology Journal, 8, 126–141. Griffiths BS, Ritz K, Ebblewhite N, Dobson G (1999) Soil microbial community structure: effects of substrate loading rates. Soil Biology and Biochemistry, 31, 145–153. Guo JX (郭繼勛), Jiang SC (姜世成), Lin HJ (林海俊), Jin XM (金曉明) (1997) Enzyme activity of alkaline meadow soil with different grassland vegetations. Chinese Journal of Applied Ecology (應(yīng)用生態(tài)學(xué)報), 8, 412–416. (in Chinese with English abstract) Haack SK, Garchow H, Odelson DA, Forney LJ, Klug MJ (1994) Accuracy, reproducibility and interpretation of fatty acid methylester profiles of model bacterial communities. Applied and Environmental Microbiology, 60, 2483–2493. Han XG (韓興國), Wang ZP (王智平) (2003) Soil biodiversity and trace gases (CO2, CH4, N2O) metabolism: a review. Biodiversity Science (生物多樣性), 1, 322–332. (in Chinese with English abstract) Harris JA (2003) Measurements of the soil microbial community for estimating the success of restoration. European Journal of Soil Science, 54, 801–808. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science, 293, 1129–1133. Hedlund K (2002) Soil microbial community structure in relation to vegetation management on former agricultural land. Soil Biology and Biochemistry, 34, 1299–1307. Hernot J, Robertson GP (1994) Vegetation removal in two soils of the humid tropics: effect on microbial biomass. Soil Biology and Biochemistry, 26, 111–117. Ibekwe AM, Kennedy AC (1998) Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions. FEMS Microbiology Ecology, 26, 151–163. Imberger KT, Chiu CY(2001) Spatial changes of soil fungal and bacterial biomass from a sub-alpine coniferous forest to grassland in a humid, sub-tropical region. Biology and Fertility of Soils, 33, 105–110. Insam H, Domsch KH (1988) Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microbial Ecology, 15, 177–188. Insam H, Parkinson D, Domsch KH (1989) Influence of macroclimate on soil microbial biomass. Soil Biology and Biochemistry, 21, 211–221. Insam H, Haselwandter K (1989) Metabolic quotient of the soil microflora in relation to plant succession. Oecologia, 79, 174–178. Jenkinson DS, Powlson DS (1976) The effects of biocidall treatment on metabolism in soil. V. A method for measuring soil biomass. Soil Biology and Biochemistry, 8, 209–213. Jiang PK (姜培坤), Xu QF (徐秋芳), Yu YW (俞益武) (2002) Microbial biomass carbon as an indicator for evaluation of soil fertility. Journal of Zhejiang Forestry College (浙江

第2期

周麗霞和丁明懋: 土壤微生物學(xué)特性對土壤健康的指示作用

169

林學(xué)院學(xué)報), 19, 17–19. (in Chinese with English abstract) Jiang PK (姜培坤), Zhou GM (周國模) (2003) Changes in soil microbial biomass carbon and nitrogen under eroded red soil by vegetation recovery. Journal of Soil Water Conservation (水土保持學(xué)報), 17, 112–114. (in Chinese with English abstract) Jin WB (金文標(biāo)), Yao JJ (姚建軍), Chen MJ (陳孟晉), Gao ZR (高哲榮) (2002) Screening indicating bacteria for microbiological exploration of natural gas. Natural Gas Industry (天然氣工業(yè)), 22, 20–22. (in Chinese with English abstract) Joseph SL, Hugenholtz P, Sangwan P, Osbome CA, Janssen PH (2003) Laboratory cultivation of widespread and previously uncultured soil bacteria. Applied and Environmental Microbiology, 69, 7210–7215. Kandeler E, Palli S, Stemmer M, Gerzabek MH (1999) Tillage changes microbial biomass and enzyme activities in particle-size fractions of a Haplic Chernozem. Soil Biology and Biochemistry, 31, 1253–1264. Kelly JJ, Haggblom M, Tare RL (1999) Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. Soil Biology and Biochemistry, 31, 1455–1465. Kieft TL, Ringelberg DB, White DC (1994) Changes in esterlinked phospholipid fatty acid profiles of subsurface bacteria during starvation and desiccation in a porous medium. Applied and Environmental Microbiology, 60, 3292–3299. Kourtev PS, Ehrenfeld JG, Haeggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology, 83, 3152–3166. Kurakov A (1998) Assessment of soil quality by biological methods: experience from arable soil in Gech Republic. In: Proceeding of the 16th World Congress of Soil Science, Montpellier, France. Leckie SE, Prescott CE, Grayston SJ, Neufeld JD, Mohn WW (2004) Comparison of chloroform fumigation-extraction, phospholipid fatty acid, and DNA methods to determine microbial biomass in forest humus. Soil Biology and Biochemistry, 36, 529–532. Lee KH, Jose SB (2003) Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management, 185, 263–273. Li FD (李阜棣) (1993) Prosperous areas of current soil microbiology. Acta Pedologica Sinica ( 土 壤 學(xué) 報 ), 30, 229–236. (in Chinese with English abstract) Li QK (李慶逵) (1989) Development and prospect of soil science in China. Acta Pedologica Sinica (土壤學(xué)報), 26, 207–216. (in Chinese with English abstract) Li YZ (李越中), Zheng SL (鄭是琳), Jiang GZ (姜廣正) (1992) Decomposition of white poplar leaves and microfungal succession related to leaves. Acta Microbiologica

Sinica (微生物學(xué)報), 32, 299–304. (in Chinese with English abstract) Liu MY (劉夢云), Chang QR (常慶瑞), Qi YB (齊雁冰), An SS (安韶山) (2006) Features of soil enzyme activity under different land uses in Ningnan Mountain area. Chinese Journal of Eco-Agriculture (中國生態(tài)農(nóng)業(yè)學(xué)報), 14, 67–70. (in Chinese with English abstract) Liu SG (劉世貴), Ge SR (葛紹榮), Long ZF (龍章富) (1994) Studies on soil microorganism numbers and microbiota of degenerated rangelands in northwest region of Sichuan, P.R.China. Acta Prataculturae Sinica (草業(yè)學(xué)報), 3, 70– 76. (in Chinese with English abstract) Long ZF (龍章富), Liu SG (劉世貴) (1994) Preliminary study on soil biochemical activities of degenerated grasslands in northwest Sichuan, China. Acta Pedologica Sinica (土壤 學(xué)報), 32, 221–227. (in Chinese with English abstract) Lou LH (婁隆厚)(1962) Effects of Microorganism on the Conversion of Soil Nutrient (微生物在土壤養(yǎng)分轉(zhuǎn)化中的作 用). Science Press, Beijing. (in Chinese) Luizao RCC, Bonde TA, Rosswall T (1992) Seasonal variation of soil microbial biomass—the effect of clear-felling a tropical rainforest and establishment of pasture in the central Amazon. Soil Biology and Biochemistry, 24, 805–813. Luo H (羅虹), Liu P (劉鵬) , Sun XM (宋小敏) (2006) Effect of compound pollution of Cd, Cu and Ni on soil enzyme activities. Journal of Soil and Water Conservation (水土 保持學(xué)報), 20, 94–121. (in Chinese with English abstract) Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature, 411, 937–940. Mersi W, Schinner F (1991) An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biology and Fertility of Soils, 11, 216–220. Miller M, Dick RP (1995) Thermal stability and activities of soil enzymes as influenced by crop rotations. Soil Biology and Biochemistry, 27, 1161–1166. Noah F, Joshua PS, Patricia AH (2003) Variations in microbial community composition through two soil depth profiles. Soil Biology and Biochemistry, 35, 167–176. Ovreas L, Torsvik V (1998) Microbial diversity and community structure in two different agricultural soil communities. Microbial Ecology, 36, 303–315. Paoletli MG (1997) Biodiversity in Agro-ecosystems-Role for Sustainability and Bioindication, pp. 35–42. Lewis Publishing, Boca Raton, USA. Perucci P, Dumontet S, Bufo SA, Mazzatura A, Casucci C (2000) Effects of organic amendment and herbicide treatment on soil microbial biomass. Biology and Fertility of Soils, 32, 17–23. Powlson DS, Brookes PC, Christensen BT (1987) Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biology and Biochemistry, 19,

170

生 物 多 樣 性 Biodiversity Science

第 15 卷

159–164. Qiu LP (邱莉萍), Liu J (劉軍), Wang YQ (王益權(quán)), Sun HM (孫慧敏), He WX (和文祥) (2004) Research on relationship between soil enzyme activities and soil fertility. Plant Nutrition and Fertilizer Science (植物營養(yǎng)與肥料學(xué)報), 10, 277–280. (in Chinese with English abstract) Qiu LP (邱莉萍), Liu J (劉軍) , He WX (和文祥), Wang YQ (王益權(quán)), Sun HM (孫慧敏) (2003) Effect of long-term fertilization on soil enzymatic activities. Agricultural Research in the Arid Area (干旱地區(qū)農(nóng)業(yè)研究), 21, 44–47. (in Chinese with English abstract) Rajendran N, Matsuda O, Imamura N, Urushigawa Y (1992) Variation in microbial biomass and community structure in sediments of eutrophic bays as determined by phospholipid ester-linked fatty acids. Applied and Environmental Microbiology, 58, 562–571. Ren TZ (任天志), Stefano G (2000) Soil bioindicators in sustainable agriculture. Scientia Agricultura Sinica (中國農(nóng) 業(yè)科學(xué)), 33, 68–75. (in Chinese with English abstract) Roy S, Singh JS (1994) Consequences of habitat heterogeneity for availability of nutrients in a dry tropical forest. Journal of Ecology, 82, 503–509. Saetre P, Bath E (2000) Spatial variation and patterns of soil microbial community structure in a mixed spruce–birch stand. Soil Biology and Biochemistry, 32, 909–917. Sarathchandra SU, Perrott KW, Littler RA (1989) Soil microbial biomass: influence of simulated temperature changes on size, activity and nutrient content. Soil Biology and Biochemistry, 21, 987–993. Schloter M, Dilly O, Munch JC (2003) Indicators for evaluating soil quality. Agriculture, Ecosystems and Environment, 98, 255–262. Scholle G, Wolters V, Joergensen RG (1992) Effects of mesofauna exclusion on the microbial biomass in two modern profiles. Biology and Fertility of Soils, 12, 253–260. Singh JS, Raghubanshi AS, Singh RS, Srivastava SC (1989) Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature, 338, 499–500. Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European Journal of Soil Science, 54, 779–791. Stark C, Condron LM, Stewart A, Hong JD, Callaghan MO (2007) Effects of past and current crop management on soil microbial biomass and activity. Biology and Fertility of Soils, (in press). Steenwerth KL, Jackson LE, Calderon FJ, Stromberg MR, Scow KM (2002) Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California. Soil Biology and Biochemistry, 34, 1599–1611. Taylor TP, Wilson B, Mills MS, Burns RG (2002) Comparison of microbial numbers and enzymatic activities in surface

soils and sub-soils using various techniques. Soil Biology and Biochemistry, 34, 387–401. Teng Y (滕應(yīng)), Huang CY (黃昌勇), Long J (龍健), Yao HY (姚槐應(yīng)), Liu F (劉方) (2003) Study on microbial activities and functional diversity of community in eroded soils from abandoned Pb, Zn, Ag mine. Journal of Soiland Water Conservation (水土保持學(xué)報), 17, 115–118. (in Chinese with English abstract) Tiwari MB, Tiwari BK, Mishra RR (1989) Enzyme activity and carbon dioxide evolution from upland and wetland rice soils under three agricultural practices in hilly regions. Biology and Fertility of Soils, 7, 359–364. Tunlid A, White DC (1992) Biochemical analysis of biomass community structure, nutritional status and metabolic activity of microbial communities in soil. In: Soil Biochemistry, Vol. 7 (eds Stotzky G, Bollag JM), pp. 229–262. Marcel Dekker, New York. van Bruggen AHC, Semenov AM (2000) In search of biological indicators for soil health and disease suppression. Applied Soil Ecology, 15, 13–24. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703–707. Vincent JM (1982) Nitrogen Fixation in Legumes. National Library of Australia Cataloguing in Publication Data, Australia. Vossbrinck CR, Co leman DC, Woolley TA (1979) A biotic and biotic factors in litter decomposition in a semiarid grassland. Ecology, 60, 265–271. Wang HM (王紅梅), Yang FQ (楊逢清), Xie SC (謝樹成), Zhou XG (周修高) (2002) Interaction between gold ion and quaternary soil microorganism: bioexploration indication. Marine Geology & Quaternary Geology (海洋地質(zhì) 與第四紀地質(zhì)), 22, 107–110. (in Chinese with English abstract) Wang YB (王友保), Liu DY (劉登義), Zhang L (張莉), Li Y (李影), Chu L (儲玲) (2003) Vegetation state and Soil enzyme activities of copper tailing yard on Tongguan Mountain. Chinese Journal of Applied Ecology (應(yīng)用生態(tài) 學(xué)報), 14, 757–760. (in Chinese with English abstract) Wardle DA (1995) Impacts of disturbance on detritus food webs in agroecosystems of contracting tillage and weed management practices. Advances in Ecological Research, 26, 105 – 185. Wardle DA, Ghani A (1995) A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biology and Biochemistry, 27, 1601–1610. Wiemken V, Laczko E, Ineichen K, Boller T (2001) Effects of elevated carbon dioxide and nitrogen fertilization on mycorrhizal fine roots and the soil microbial community in beech–spruce ecosystems on siliceous and calcareous soil. Microbial Ecology, 42, 126–135. Xu GH (許光輝), Zheng HY (鄭洪元), Zhang DS (張德生),

第2期

周麗霞和丁明懋: 土壤微生物學(xué)特性對土壤健康的指示作用

171

Lu YB (盧耀波), Li YK (李玉坤), Zhang SX (張淑賢) , Liu ZZ (劉增柱), Wu WF (吳文芳) , Zhao ZY (趙振英) , Li FZ (李風(fēng)珍) , Liu RJ (劉瑞君) (1984) Study on ecological distribution and biochemical properties of forest soil microorganisms on the northern slope of the Changbai Shan Mountain Natural Reserve. Acta Ecologica Sinica (生態(tài)學(xué)報), 4, 207–223. (in Chinese with English abstract) Yang YG (楊元根), Paterson E, Campbell C (2002) Application of BIOLOG method to study on microbial features in urban and rural soils. Acta Pedologica Sinica (土壤學(xué)報), 39, 582–589. (in Chinese with English abstract) Yao HY, He ZL, Huang CY (2001) Phospholipid fatty acid profiles of Chinese red soil with varying fertility levels and land use histories. Pedosphere, 11, 97–l03. Yi WM (蟻偉民), Ding MM (丁明懋), Liao LY (廖蘭玉) (1990) Vesicular arbuscular mycorrhiza in artificial forests in Heshan and Dianbai, Guangdong. Tropical and Subtropical Forest Ecosystem (熱帶亞熱帶森林生態(tài)系統(tǒng)研 究), 7, 41–49. (in Chinese with English abstract) Yi WM (蟻偉民), Ding MM (丁明懋), Liao LY (廖蘭玉), Chen TX (1984) The research of soil microbial characteristics in the Dinghushan Biosphere Reserve and Dianbai artificial vegetaion station. Tropical and Subtropical Forest Ecosystem ( 熱 帶 亞 熱 帶 森 林 生 態(tài) 系 統(tǒng) 研 究 ), 2, 59–68. (in Chinese with English abstract) Yi WM (蟻偉民), Fu SL (傅聲雷), Zhou CY (周存宇), Ding

MM (丁明懋) (1995) A study on soil microbial biomass in artificial and natural forests. Acta Ecologica Sinica (生態(tài) 學(xué)報), 15 (Suppl. A), 141–147. (in Chinese with English abstract) Yu S (余慎), Li Y (李勇), Wang JH (王俊華), Che YP (車玉 萍), Pan YH (潘映華), Li ZG (李振高) (1999) Study on the soil microbial biomass as a bioindicator of soil quality in the red earth ecosystem. Acta Pedologica Sinica (土壤 學(xué)報), 36, 413–422. (in Chinese with English abstract) Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biology and Fertility of Soils, 29, 111–129. Zhang HY (張海燕), Xiao YH (肖延華), Zhang XD (張旭東), Li J (李軍), Xi LM (席聯(lián)敏) (2006) Microbial biomass as an indicator for evaluation of soil fertility properties. Chinese Journal of Soil Science (土壤通報), 37, 422–425. (in Chinese with English abstract) Zhou LK (周禮愷), Zhang ZM (張志明), Cao CJ (曹承 錦)(1983) On the role of the totality of soil enzyme activities in the evaluation of the level of soil fertility. Acta Pedologica Sinica (土壤學(xué)報), 20, 413–417. (in Chinese with English abstract)

(責(zé)任編輯: 周玉榮)



  本文關(guān)鍵詞:土壤微生物學(xué),,由筆耕文化傳播整理發(fā)布。



本文編號:174140

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/wenshubaike/kjzx/174140.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶61b8a***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com