borel域 的翻譯結(jié)果
In this paper, we obtained a new method of generating finite or countably infinite dimensional product σ —algebra, and proved that countably infinite dimensional Borel field has the cardinality of the continuum.
本文得到了有限及可數(shù)無限維乘積σ—代數(shù)的一種新的生成方法,并證明了可數(shù)無限維Borel域具有連續(xù)統(tǒng)的勢.
For metric space X, by M(X) we mean the set of Borel probability measures over X with bounded support, and by R(X) the set of Radon measures in M(X).M(X), R(X) are endowed with Hutchison metric. In this paper, the following results weregot: R(X) is complete if and only if X is complete and bounded. In case that X is seperable,then M(X) is complete if and only if X is complete and bounded.
距離空間X上,以M(X)記定義在X的Borel域上的具有有界支撐的概率測度全體,R(X)記M(X)中所有Radon測度,M(X),R(X)均賦予Hutchison度量.本文得到:R(X)完備當(dāng)且僅當(dāng)X完備且有界.若X可分,則:M(X)完備當(dāng)且僅當(dāng)X完備且有界.
Let X be a Hausdorff topological space and m be the finite measure on its Borel σ-field B(X). Let {Tt}t≥0 be the sub-Markov semigroup on L~P(X, m) (p > 1) and F_(r,p). be the Sobolev space generated by {Tt}t≥0 Let Cap_(r,p).(.) (r > 0,p > 1) be the capacity associated with {Tt}t≥0 With some conditions we prove that for any positive functional on F_(r.p)~* the dual space of F_(r,p)., there exists an unique measure μ■ on B(X) satisfying Furthermore for any B ∈ B(X), Cap(r,p).(B) = 0 if and only if μ■(B)...
設(shè)X是 Hausdorff拓?fù)淇臻g,m是其 Borel域 B(X)上的有限測度.{T_t}t≥0。是 L~p(X;m)(p>1)上的次馬氏半群.F_(r,,p)。是由該半群生成的Sobolev空間.Cap_(r,p)(r> 0;p>1)是相應(yīng)的容度,本文在一定條件下證明了對任意F_(r,p)共軛空間F_(r,p)~*中的正泛函■, 存在X上唯一的σ-有限測度μ■,使得_(F(r,p))〈u,■〉_(F(r,p)*)=∫_x~u(x)μ■(dx),u∈F_(r,p), 并且對任意B∈B(X)Cap~(r,p)(B)=0的充要條件是μ■(B)=0,■∈F_(r,p)~*。
 
本文編號:27454
本文鏈接:http://sikaile.net/wenshubaike/jyzy/27454.html