新人教版八年級數(shù)學(xué)下冊一次函數(shù)教案
本文關(guān)鍵詞:一次函數(shù)教案
更多相關(guān)文章: 新人教 人教 八年級 數(shù)學(xué) 下冊 一次 函數(shù) 教案
一、創(chuàng)設(shè)情境
1.一次函數(shù)的圖象是什么,如何簡便地畫出一次函數(shù)的圖象?
。ㄒ淮魏瘮(shù)y=kx+b(k≠0)的圖象是一條直線,畫一次函數(shù)圖象時,取兩點即可畫出函數(shù)的圖象).
2.正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過哪一點的直線?
。ㄕ壤瘮(shù)y=kx(k≠0)的圖象是經(jīng)過原點(0,0)的一條直線).
3.平面直角坐標(biāo)系中,x軸、y軸上的點的坐標(biāo)有什么特征?
4.在平面直角坐標(biāo)系中,畫出函數(shù)的圖象.我們畫一次函數(shù)時,所選取的兩個點有什么特征,通過觀察圖象,你發(fā)現(xiàn)這兩個點在坐標(biāo)系的什么地方?
二、探究歸納
1.在畫函數(shù)的圖象時,,通過列表,可知我們選取的點是(0,-1)和(2,0),這兩點都在坐標(biāo)軸上,其中點(0,-1)在y軸上,點(2,0)在x軸上,我們把這兩個點依次叫做直線與y軸與x軸的交點.
2.求直線y=-2x-3與x軸和y軸的交點,并畫出這條直線.
分析x軸上點的縱坐標(biāo)是0,y軸上點的橫坐標(biāo)0.由此可求x軸上點的橫坐標(biāo)值和y軸上點的縱坐標(biāo)值.
解因為x軸上點的縱坐標(biāo)是0,y軸上點的橫坐標(biāo)0,所以當(dāng)y=0時,x=-1.5,點(-1.5,0)就是直線與x軸的交點;當(dāng)x=0時,y=-3,點(0,-3)就是直線與y軸的交點.
過點(-1.5,0)和(0,-3)所作的直線就是直線y=-2x-3.
所以一次函數(shù)y=kx+b,當(dāng)x=0時,y=b;當(dāng)y=0時,.所以直線y=kx+b與y軸的交點坐標(biāo)是(0,b),與x軸的交點坐標(biāo)是.
三、實踐應(yīng)用例1若直線y=-kx+b與直線y=-x平行,且與y軸交點的縱坐標(biāo)為-2;求直線的表達(dá)式.
分析直線y=-kx+b與直線y=-x平行,可求出k的值,與y軸交點的縱坐標(biāo)為-2,可求出b的值.
解因為直線y=-kx+b與直線y=-x平行,所以k=-1,又因為直線與y軸交點的縱坐標(biāo)為-2,所以b=-2,因此所求的直線的表達(dá)式為y=-x-2.
例2求函數(shù)與x軸、y軸的交點坐標(biāo),并求這條直線與兩坐標(biāo)軸圍成的三角形的面積.
分析求直線與x軸、y軸的交點坐標(biāo),根據(jù)x軸、y軸上點的縱坐標(biāo)和橫坐標(biāo)分別為0,可求出相應(yīng)的橫坐標(biāo)和縱坐標(biāo)?
[新人教版八年級數(shù)學(xué)下冊一次函數(shù)教案]相關(guān)文章:
1.八年級數(shù)學(xué)一次函數(shù)復(fù)習(xí)教案
2.蘇教版八年級數(shù)學(xué)教案
3.有關(guān)粵教版八年級地理下冊教案的文章
4.蘇教版初二下冊《陋室銘》教案
5.滬教版初二下冊《不求甚解》教案?
6.八年級一次函數(shù)教案
7.八年級數(shù)學(xué)活動課教案
8.八年級數(shù)學(xué)教案
9.蘇教版八年級下冊《白楊禮贊》教案
10.魯教版語文八年級下冊《隆中對》教案
新人教版八年級數(shù)學(xué)下冊一次函數(shù)教案
https://mip.yuwenmi.com/jiaoan/banianji/491132.html
本文編號:1169867
本文鏈接:http://sikaile.net/wenshubaike/jajx/1169867.html