天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 碩博論文 > 社科博士論文 >

Mining Web-based Learning System Data to Detect Different Pa

發(fā)布時(shí)間:2021-08-27 21:39
  預(yù)測學(xué)生表現(xiàn)、參與度的能力對于研究課題很重要,因?yàn)樗鼈兛梢詭椭處煼乐箤W(xué)生在期末考試前放棄課程,并確定需要額外幫助的學(xué)生。本研究的目的是預(yù)測學(xué)生在在線學(xué)習(xí)課程中會遇到的困難與參與度。我們使用機(jī)器學(xué)習(xí)(ML)算法分析了由稱為數(shù)字電子教育與設(shè)計(jì)套件(Deeds)的技術(shù)增強(qiáng)學(xué)習(xí)(TEL)系統(tǒng)和虛擬學(xué)習(xí)環(huán)境(VLE)記錄的數(shù)據(jù)。Deeds系統(tǒng)允許學(xué)生在記錄輸入數(shù)據(jù)的同時(shí)解決不同難度的電子電路設(shè)計(jì)練習(xí)。VLE從開放大學(xué)(OU)向?qū)W生提供不同的講座、作業(yè)和材料。然后根據(jù)訓(xùn)練數(shù)據(jù)對ML算法進(jìn)行訓(xùn)練,并在測試數(shù)據(jù)上進(jìn)行測試。我們進(jìn)行了k次交叉驗(yàn)證,并計(jì)算了接收機(jī)的工作特性和均方根誤差、召回率、kappa和精度度量來評估模型的性能。結(jié)果表明,與其他算法相比,人工神經(jīng)網(wǎng)絡(luò)(ANN)和支持向量機(jī)(SVM)對在線學(xué)習(xí)過程中學(xué)生學(xué)習(xí)困難的預(yù)測精度較高。此外,研究結(jié)果顯示,決策樹(DT)、J48、JRIP和梯度提升樹(GBT)分類器在預(yù)測VLE課程學(xué)生參與度上表現(xiàn)得更好。神經(jīng)網(wǎng)絡(luò)、支持向量機(jī)、DT、GBT和JRIP可以很容易地集成到在線學(xué)習(xí)系統(tǒng)中;因此,我們希望教師在課程期間根據(jù)相應(yīng)的分析報(bào)告改進(jìn)學(xué)生的表現(xiàn)。 

【文章來源】:上海大學(xué)上海市 211工程院校

【文章頁數(shù)】:114 頁

【學(xué)位級別】:博士

【文章目錄】:
摘要
ABSTRACT
Chapter 1 Introduction
    1.1.Introduction
    1.2.E-learning challenges
    1.3.Importance of the current study
    1.4.The innovation of the current study
    1.5.Current study research questions
    1.6.Contribution
    1.7.Chapter overview
Chapter 2 Background
    2.1 Deeds
    2.2 MOOC and LMS
    2.3 Digital design course
    2.4 Student difficulty in the next session
    2.5 Virtual learning environment(VLE)
    2.6 Student engagement
    2.7 Educational data mining(EDM)
    2.8 Data mining
        2.8.1 Descriptive model
        2.8.2 Predictive model
    2.9 ML techniques used in the current study
        2.9.1.Decision tree(DT)
        2.9.2.J48
        2.9.3.Classification and regression tree(CART)
        2.9.4.JRIP decision rules
        2.9.5.Gradient Boosting trees(GBT)
        2.9.6.Na?ve bayes classifier(NBC)
        2.9.7.Artificial Neural network(ANN)
        2.9.8.Support vector machine(SVM)
        2.9.9.Logistic regression(DT)
Chapter 3 Problem formulation
    3.1 Predict student difficulty in next session
    3.2 Predict student engagement in VLE
Chapter 4 Data description and pre-processing
    4.1 Predict student difficulty in next session
        4.1.1 Data description
        4.1.2 Pre-processing
    4.2 Predict student engagement in VLE
        4.2.1.Data description
        4.2.2.Preprocessing
        4.2.3.Predictors that affect student engagement in web-based system
Chapter 5 Related works
    5.1.Predict student difficulty in next session
        5.1.1.Traditional learning
        5.1.2.Web-based learning
    5.2.Predict student engagement in VLE
Chapter 6 Proposed Methodology
    6.1.Predict student difficulty in next session
        6.1.1.Combination of the predictor variables
        6.1.2.Model training
        6.1.3.Model evaluation
    6.2.Predict student engagement in VLE
        6.2.1.Building and testing the predictive model
    6.3.Performance Metrics
Chapter 7 Experiments and Results
    7.1.Predict student difficulty in next session
        7.1.1.Propose Model adaptability in education
    7.2.Predict student engagement in VLE
        7.2.1.Data visualization and statistical analysis of the data
        7.2.2.Results and discussion
        7.2.3.Development of an engagement prediction system
        7.2.4.OU analysis Dashboard for the current study
        7.2.5.Predictive model application in a web-based system
Chapter 8 Conclusion
References
Published worked
Acknowledgement



本文編號:3367138

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/sklbs/3367138.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶885de***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
男女午夜福利院在线观看| 亚洲清纯一区二区三区| 91精品蜜臀一区二区三区| 精品精品国产自在久久高清| 欧美日韩三区在线观看| 欧美一区二区三区播放| 大香伊蕉欧美一区二区三区| 国产内射在线激情一区| 99久久精品国产日本| 亚洲最新中文字幕一区| 亚洲夫妻性生活免费视频| 久久女同精品一区二区| 精品欧美一区二区三久久| 久久本道综合色狠狠五月| 老司机激情五月天在线不卡| 欧美激情中文字幕综合八区| 黄片在线免费看日韩欧美| 国产精品成人又粗又长又爽| 欧美黑人暴力猛交精品| 亚洲精品中文字幕无限乱码| 小草少妇视频免费看视频| 国产日韩欧美专区一区| 少妇被粗大进猛进出处故事| 国产肥妇一区二区熟女精品| 日韩成人动作片在线观看| 色婷婷激情五月天丁香| 免费黄片视频美女一区| 国产av天堂一区二区三区粉嫩| 老司机精品在线你懂的| 久久大香蕉精品在线观看| 国产亚洲成av人在线观看| 91超频在线视频中文字幕| 国产精品亚洲二区三区| 熟女白浆精品一区二区| 护士又紧又深又湿又爽的视频| 亚洲精品中文字幕无限乱码| 日本人妻免费一区二区三区| 欧洲自拍偷拍一区二区| 日本东京热视频一区二区三区| 国产在线观看不卡一区二区| 好骚国产99在线中文|