基于模式轉移和操控特性的駕駛風格評測研究
本文選題:駕駛風格 + 駕駛模式; 參考:《清華大學》2016年博士論文
【摘要】:我國道路交通安全形勢嚴峻,不良駕駛風格充斥于日常駕駛行為之中。在車聯(lián)網(wǎng)技術迅速發(fā)展的大背景下,研究并實現(xiàn)對險態(tài)駕駛風格的有效監(jiān)測,并以離線反饋教育或在線危險預警的方式進行干預,對提升道路行車安全性具有重要意義。當前針對駕駛風格的研究普遍存在綜合評測維度局限性和駕駛操作評測維度不完整性的問題。為解決這些問題,本課題構建了考慮人認知特性和信息優(yōu)化表達的駕駛模式分解與辨識方法體系,從駕駛模式轉移和駕駛操作控制兩個維度出發(fā),設計了相應的駕駛風格險態(tài)評測方法,拓展了駕駛風格評測的方法體系。針對高速工況下駕駛模式辨識存在的動態(tài)時變、多維耦合和局部相似的問題,提出了以制動減速度、跟馳時距和跟馳時距變化率作為縱向駕駛模式的辨識指標;針對橫向駕駛模式的辨識,采用了2s時窗內的方向盤轉角香農熵、2s時窗內的橫向加速度均方根、5s時窗內的橫擺角速度標準差和4s時窗內的速度香農熵四個特征參數(shù)作為隨機森林分類器的輸入,以分類器的輸出概率作為橫向駕駛模式的辨識指標。驗證結果顯示,本課題提出的駕駛模式辨識方法體系可實現(xiàn)對各駕駛模式的有效辨識,辨識精度可達86~98%。為實現(xiàn)對駕駛風格在模式轉移維度(頻度)的有效評測,以駕駛模式轉移概率為基礎,優(yōu)選出了五種可表征駕駛風格模式轉移特性的典型駕駛模式轉移形態(tài)分別為:近距離跟馳→受限右換道,受限右換道→受限左換道,受限左換道→迫近,迫近→受限右換道和受限左換道→自由直行。以這五種形態(tài)發(fā)生的條件概率值作為隨機森林分類器的輸入,以輸出的隸屬于不同風格類型的概率值作為判別標準,實現(xiàn)了對駕駛風格險態(tài)頻度的有效評測。交叉驗證結果顯示,該方法的辨識精度可達93%,比基于傳統(tǒng)方法對駕駛風格險態(tài)頻度表現(xiàn)的評測精度高出18%。為實現(xiàn)對駕駛風格在操作控制維度(強度)的有效評測,提出了以加速度的冪指數(shù)在時間序列上的積分量化表征人感知到的險態(tài)強度,通過對人在加速、制動、車距控制、換道控制和轉彎控制五個維度上的險態(tài)強度感知進行加權綜合,得到駕駛操作激進指數(shù)作為駕駛風格險態(tài)強度表現(xiàn)的評測指標;谑潞笠曨l和現(xiàn)場評價的驗證試驗結果顯示,該算法的辨識精度可達85~92%。綜合駕駛風格在險態(tài)頻度和強度兩個維度的表現(xiàn),構建了決策樹模型對綜合駕駛風格進行評測。驗證試驗表明,該決策樹模型的辨識精度可達89%。
[Abstract]:Our country road traffic safety situation is grim, the bad driving style is flooded in the daily driving behavior. Under the background of the rapid development of vehicle networking technology, it is of great significance to study and realize the effective monitoring of dangerous driving style and to intervene in offline feedback education or online hazard warning. At present, there are some problems in the study of driving style, such as the limitation of comprehensive evaluation dimension and the incompleteness of driving operation evaluation dimension. In order to solve these problems, this paper constructs a driving pattern decomposition and identification method system, which takes into account the cognitive characteristics of human beings and the optimal expression of information, starting from the two dimensions of driving mode transfer and driving operation control. The method of dangerous driving style evaluation is designed, and the method system of driving style evaluation is expanded. Aiming at the problems of dynamic time-varying, multi-dimensional coupling and local similarity in driving mode identification under high-speed operating conditions, this paper puts forward the identification index of longitudinal driving mode based on braking deceleration, following time distance and changing rate of following driving time distance. For lateral driving mode identification, In this paper, four characteristic parameters of steering wheel angle Shannon entropy in 2s window and transverse acceleration root-square velocity standard deviation in 5s window and velocity Shannon entropy in 4s window are used as input of random forest classifier. The output probability of the classifier is used as the identification index of the lateral driving mode. The verification results show that the driving mode identification system presented in this paper can effectively identify each driving mode, and the identification accuracy can reach 860.98%. In order to realize the effective evaluation of driving style in the dimension of mode transfer (frequency), it is based on the probability of driving mode transfer. Five typical driving mode transfer patterns which can characterize the characteristics of driving style mode transfer are selected as follows: short distance following, restricted right change, restricted left approach. The approach is restricted to the right and the restricted left to go straight and free. The conditional probabilistic values of these five morphogenesis are taken as the input of the random forest classifier and the probabilistic values of the output which belong to different style types are taken as the criterion to realize the effective evaluation of the dangerous frequency of driving style. The results of cross validation show that the accuracy of this method can reach 933, which is 18.5% higher than that of the traditional method in evaluating the dangerous frequency of driving style. In order to effectively evaluate driving style in the dimension of operation control (intensity), this paper presents a method of quantifying the perceived dangerous state intensity by integrating the power exponent of acceleration in time series, which is controlled by acceleration, braking and distance control. On the basis of weighted synthesis of risk intensity perception in five dimensions of change control and turn control, the radical index of driving operation is obtained as the evaluation index of dangerous intensity performance of driving style. The experimental results based on post video and field evaluation show that the identification accuracy of the algorithm can reach 85 / 92. The decision tree model is constructed to evaluate the comprehensive driving style in the two dimensions of dangerous frequency and intensity. The experimental results show that the precision of the decision tree model is up to 89.
【學位授予單位】:清華大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:B842
【相似文獻】
相關期刊論文 前2條
1 馬歇爾·戈德史密斯;尹玉生;;換道而行[J];意林(原創(chuàng)版);2008年02期
2 邵傳賢;;你的車速比你想象的快得多[J];人生與伴侶(月末版);2008年04期
相關會議論文 前3條
1 張安英;;基于預判概率的換道決策模型研究[A];第八屆中國智能交通年會優(yōu)秀論文集——智能交通與安全[C];2013年
2 李瑋;段建民;龔建偉;;障礙物條件下智能車輛換道路徑規(guī)劃的近優(yōu)解[A];2011年中國智能自動化學術會議論文集(第一分冊)[C];2011年
3 楊曉光;孫劍;;面向ITS的交通仿真實驗系統(tǒng)研究與開發(fā)[A];第一屆中國智能交通年會論文集[C];2005年
相關重要報紙文章 前3條
1 本報記者 李龍俊;換道超車,才有機會后來居上[N];四川日報;2014年
2 記者 徐景明;車一進隧道就不允許換道[N];廈門日報;2010年
3 聞天;安全駕車十二訣[N];華夏時報;2004年
相關博士學位論文 前10條
1 宋竹;微觀交通仿真查詢算法與換道模型研究[D];電子科技大學;2015年
2 李慧軒;基于駕駛行為動態(tài)獲取的換道行為微觀建模及仿真校驗研究[D];北京交通大學;2016年
3 楊柳;基于元胞自動機的高速公路交通流特性研究[D];長沙理工大學;2015年
4 郭艷君;營運客車典型危險行駛狀態(tài)識別方法研究[D];長安大學;2016年
5 李國法;基于模式轉移和操控特性的駕駛風格評測研究[D];清華大學;2016年
6 彭金栓;基于視覺特性與車輛相對運動的駕駛人換道意圖識別方法[D];長安大學;2012年
7 王暢;車輛換道預警的若干關鍵問題研究[D];長安大學;2012年
8 侯海晶;高速公路駕駛人換道意圖識別方法研究[D];吉林大學;2013年
9 黨睿娜;具有換道輔助功能的車輛自適應巡航控制[D];清華大學;2013年
10 羅強;面向高速公路行車安全預警的車道偏離及換道模型研究[D];華南理工大學;2014年
相關碩士學位論文 前10條
1 吳杭哲;基于最小安全距離的車輛換道控制研究[D];哈爾濱工業(yè)大學;2015年
2 滕飛;換道車輛的實時軌跡預測方法研究[D];北京理工大學;2016年
3 袁盛s,
本文編號:2031453
本文鏈接:http://sikaile.net/shoufeilunwen/rwkxbs/2031453.html