需求側(cè)管理對電力節(jié)能減排的影響分析與優(yōu)化模型研究
本文選題:需求側(cè)管理 + 電力; 參考:《華北電力大學(xué)》2015年博士論文
【摘要】:近年來,中國經(jīng)濟發(fā)展取得了舉世矚目的成果,在2010年,中國以名義GDP58786億美元,越過日本,成為世界第二大經(jīng)濟體。但受制于我國產(chǎn)業(yè)結(jié)構(gòu)不合理的影響,高速的經(jīng)濟發(fā)展帶來的確實能源消耗量和污染物排放量的逐年遞增,可以說,中國是以資源和環(huán)境為代價來換取經(jīng)濟發(fā)展。盡管中國資源儲備總量要處于世界前列,但人均占有量卻遠遠低于其他各國。故為了降低能源消耗量和污染物排放量,中國推出了節(jié)能減排政策,并將其列出可持續(xù)發(fā)展的重要內(nèi)容。結(jié)合中國當(dāng)前能源消耗去向可知,電力行業(yè)能源消耗量和污染物排放量占總能源消耗量和污染物排放量的比重均要高于50%,故在電力行業(yè)開展節(jié)能減排政策,對于實現(xiàn)國家整體節(jié)能減排有著重要意義。國內(nèi)外,關(guān)于電力行業(yè)節(jié)能減排已開展了深入的研究,但從電力產(chǎn)業(yè)鏈的角度來看,現(xiàn)有成果更多的集中于發(fā)電環(huán)節(jié),受制于電力供需時時平衡的特性,在研究電力行業(yè)節(jié)能減排措施時,有必要討論用戶側(cè)對發(fā)電側(cè)節(jié)能減排的影響,開展需求側(cè)管理;谏鲜霰尘,本文開展了需求側(cè)管理對電力節(jié)能減排的影響分析與優(yōu)化模型的研究,主要研究內(nèi)容包括以下幾個方面:(1)構(gòu)建了有序用電對電力節(jié)能減排的影響分析模型。以電力供應(yīng)不足為研究背景,研究了有序用電的節(jié)能減排效果。從用電價值、節(jié)能減排、信用等級等維度構(gòu)建了用戶有序用電序位評價指標(biāo)體系和用戶有序用電方案的編制方法,并引入綜合評價方法對有序用電管理效果進行了綜合評價與分析。(2)構(gòu)建了需求響應(yīng)對電力節(jié)能減排的影響與分析模型。提出了確定性需求響應(yīng)與隨機性需求響應(yīng)的建模方法,構(gòu)建了需求響應(yīng)對節(jié)能減排的影響分析模型,和需求響應(yīng)參與日前調(diào)度的機組組合優(yōu)化模型,通過算例分析討論了確定性需求響應(yīng)和隨機性需求響應(yīng)參與系統(tǒng)調(diào)度的優(yōu)化結(jié)果。(3)構(gòu)建了智能用電園區(qū)對節(jié)能減排的影響分析模型。以智能用電園區(qū)為研究對象,介紹了智能用電園區(qū)的基本概念、用電特征及園區(qū)內(nèi)分布式能源的供電特征,提出了分布式能源多目標(biāo)規(guī)劃與調(diào)度優(yōu)化模型,通過算例分析討論了分布式能源調(diào)度對電力節(jié)能減排的影響。(4)構(gòu)建了電動汽車與風(fēng)電協(xié)同調(diào)度對電力節(jié)能減排的影響分析模型。引入布朗運動模擬風(fēng)電出力的不確定性場景并提出了基于向后迭代法的場景削減策略;構(gòu)建了風(fēng)電與電動汽車聯(lián)合調(diào)度優(yōu)化模型及交叉遺傳粒子群算法,并通過實例仿真驗證了所提模型及算法的有效性和適用性。(5)提出了集中電采暖消納風(fēng)電對電力節(jié)能減排的影響分析模型。以北京市電采暖為研究對象,結(jié)合北京電采暖發(fā)展規(guī)劃,提出了基于面積的采暖熱負(fù)荷測算模型。然后,為了研究電采暖消納風(fēng)電的調(diào)度機制,構(gòu)建了電采暖消納風(fēng)電調(diào)度優(yōu)化模型,并對其節(jié)能減排效果進行了評價。最后,由于電采暖涉及方眾多,本文測算了電采暖消納風(fēng)電的價格區(qū)間,并討論了電采暖對風(fēng)電場、電網(wǎng)公司和供暖企業(yè)效益的影響。
[Abstract]:In recent years, China's economic development has made remarkable achievements. In 2010, China has become the second largest economy in the world with its nominal GDP58786 billion dollars over Japan, but it is affected by the irrational industrial structure in China. The real energy consumption and the emission of pollutants from high speed economic development are increasing year by year. China is in exchange for economic development at the cost of resources and environment. Although China's total resource reserve is in the forefront of the world, its per capita share is far lower than that of other countries. In order to reduce energy consumption and pollutant emissions, China has launched a policy of energy conservation and emission reduction, and lists it as an important content of sustainable development. At present, it is known that the energy consumption and pollutant discharge of the power industry are higher than 50% of the total energy consumption and pollutant emission, so it is of great significance to carry out energy saving and emission reduction policy in the power industry. But from the point of view of the electric power industry chain, the existing results are more concentrated in the power generation link and are subject to the characteristic of the balance of the power supply and demand. It is necessary to discuss the effect of the user side on energy saving and emission reduction and the demand side management in the study of the energy saving and emission reduction measures in the power industry. Based on the above background, this paper has carried out the demand. The main research contents of side management on power saving and emission reduction are as follows: (1) the analysis model of the influence of ordered electricity consumption on energy saving and emission reduction is constructed. The effect of energy saving and emission reduction of ordered power consumption is studied with the lack of electricity supply as the research background. The hierarchy and other dimensions are used to construct the user ordered evaluation index system and the programming method of users' ordered electricity use scheme, and the comprehensive evaluation method is introduced to evaluate and analyze the effect of orderly power management. (2) the influence and analysis model of demand response on energy conservation and emission reduction is constructed. The response of deterministic demand and the response of demand response are proposed. The modeling method of stochastic demand response is built, and an analysis model of the impact of demand response on energy conservation and emission reduction is constructed, and the unit combination optimization model of the demand response is involved in the pre day scheduling. The results of the deterministic demand response and stochastic demand response are discussed through an example analysis. (3) an intelligent electric park is constructed. Based on the basic concept of intelligent power park, the basic concept of intelligent power park is introduced, the characteristics of electricity and the power supply characteristics of distributed energy in the park are introduced. The multi-objective planning and scheduling optimization model of distributed energy is proposed, and the energy conservation and emission reduction of distributed energy scheduling is discussed through an example analysis. (4) 4) an analysis model of the influence of electric vehicle and wind power CO scheduling on energy saving and emission reduction is constructed. The uncertainty scene of wind power simulation is simulated by introducing Brown movement and a scenario reduction strategy based on backward iteration is proposed, and a joint scheduling optimization model and a cross genetic particle swarm optimization algorithm are constructed. The validity and applicability of the proposed model and algorithm are verified by example simulation. (5) an analysis model of the influence of centralized electricity heating and extinction wind power on energy saving and emission reduction is put forward. Taking Beijing electric heating as the research object and combining with the development plan of Beijing electric heating, the heating load calculation model based on area is put forward. The optimization model of electric heating and elimination wind power dispatching is constructed and the effect of energy saving and emission reduction is evaluated. Finally, the price range of electric heating is calculated, and the effect of electric heating on wind power, Power Grid Corp and heating enterprises is discussed.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:F426.61
【參考文獻】
相關(guān)期刊論文 前10條
1 譚忠富;謝品杰;王綿斌;張蓉;乞建勛;;提高電能使用效率的可中斷電價與峰谷分時電價的聯(lián)合優(yōu)化設(shè)計[J];電工技術(shù)學(xué)報;2009年05期
2 劉樹杰;;支持“能效電廠”的電價政策建議[J];電力技術(shù)經(jīng)濟;2007年04期
3 付蓉;;電力工業(yè)實施SO_2排污權(quán)交易的必要性和障礙分析[J];電力技術(shù)經(jīng)濟;2008年03期
4 葉永松;張維;張銀芽;;兼容市場機制的節(jié)能發(fā)電調(diào)度利益補償機制研究[J];電力需求側(cè)管理;2008年06期
5 曾鳴;王冬容;陳貞;;需求側(cè)響應(yīng)中的經(jīng)濟學(xué)原理[J];電力需求側(cè)管理;2008年06期
6 周永燦;李揚;;考慮需求側(cè)響應(yīng)的尖峰電價實施效益的分析[J];電力需求側(cè)管理;2009年02期
7 黎燦兵,康重慶,夏清,黃永皓,尚金成,孟遠景,丁軍威,沈瑜;發(fā)電權(quán)交易及其機理分析[J];電力系統(tǒng)自動化;2003年06期
8 段登偉,劉俊勇,吳集光;計及風(fēng)險的配電公司最優(yōu)分時零售電價模型[J];電力系統(tǒng)自動化;2005年03期
9 丁偉,袁家海,胡兆光;基于用戶價格響應(yīng)和滿意度的峰谷分時電價決策模型[J];電力系統(tǒng)自動化;2005年20期
10 黃健柏;黃向宇;邵留國;扶縛龍;;基于系統(tǒng)動力學(xué)的峰谷分時電價模型與仿真 (一)模型的建立[J];電力系統(tǒng)自動化;2006年11期
相關(guān)碩士學(xué)位論文 前2條
1 陳坤麗;我國可中斷電價設(shè)計中的問題研究[D];華北電力大學(xué)(北京);2007年
2 許蔚;考慮可中斷負(fù)荷的備用輔助服務(wù)交易與定價問題研究[D];北京交通大學(xué);2010年
,本文編號:2031131
本文鏈接:http://sikaile.net/shoufeilunwen/jjglss/2031131.html