求解滲流自由面的逐步剖分法
[Abstract]:The solution of seepage free surface is one of the difficult problems in seepage analysis. The seepage free surface is the boundary to be solved in the seepage field, and the head value is equal to the elevation (the first type boundary condition) and the flow exchange is zero (the second type boundary condition) at the same time. In previous research work, the finite element method such as virtual element method and initial flow method was used to solve the seepage free surface. In order to improve the calculation accuracy, the boundary conditions of the first or the second kind are approximated gradually by increasing the number of iterations. The calculation is complicated. In this paper, a step-by-step method for solving the free surface of steady seepage field based on the minimum real-domain energy loss rate is presented. The physical meaning of this method is clear and the calculation accuracy is high. The main results are as follows: 1. The seepage free surface is optimized based on the six-node triangular element. The six-node triangular element has never been used in solving the free surface of plane seepage. In this paper, the triangle element and isoparametric quadrilateral element commonly used in plane seepage calculation are compared and analyzed. The six-node triangular element has the following advantages: (1) it can adapt to the seepage boundary with complex shape; (2) the nonlinear head interpolation function can be expressed by complete quadratic polynomials. Based on the mesh of six-node triangular element, the seepage free surface of the rectangular seepage model is solved by using the optimized virtual element method. Compared with the experimental solution of electrical simulation, the obtained seepage free surface is more accurate and closer to its real state. Based on the minimum real-domain energy loss rate, a step-by-step partition method is proposed to solve the seepage free surface. For the seepage flow field with definite upstream, downstream boundary and free exudation boundary, the finite element division is carried out, and the seepage free surface point is solved gradually from the seepage overflow point to the seepage flow convergence point, with each layer of element advancing. Based on the minimum real-domain energy loss rate, the point position of the free surface on the profile is solved, until the complete seepage free surface and the complete seepage real domain are obtained. 3. The program of the progressive partition method is programmed with Fortran language. The seepage free surface of rectangular dam with electric simulated test solution, rectangular dam with model test solution and trapezoidal dam with analytical solution is solved. The maximum relative errors are 4.94%, 1.37% and 2.57%, respectively, compared with the electrical model test solution, glycerin test solution and analytical solution. The results show that the step-by-step method has high accuracy.
【學(xué)位授予單位】:煙臺大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TV139.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 唐紅影;;基于改進(jìn)棄單元法的滲流自由面計(jì)算[J];水電能源科學(xué);2016年11期
2 覃小華;劉東升;宋強(qiáng)輝;王旭;吳潤澤;辛建平;;強(qiáng)降雨條件下基巖型層狀邊坡入滲模型及穩(wěn)定性研究[J];巖土力學(xué);2016年11期
3 潘樹來;王全鳳;俞縉;蔡燕燕;;三維非穩(wěn)定滲流自由面邊界積分項(xiàng)的精確數(shù)值計(jì)算[J];計(jì)算力學(xué)學(xué)報(bào);2015年02期
4 李樹忱;王兆清;袁超;;巖土體滲流自由面問題的重心插值無網(wǎng)格方法[J];巖土力學(xué);2013年07期
5 劉豐;李春光;鄭宏;;無壓滲流問題的混合自適應(yīng)法[J];計(jì)算力學(xué)學(xué)報(bào);2013年S1期
6 張順福;丁留謙;劉昌軍;姚秋玲;唐菊珍;;基于子域積分的初流量法改進(jìn)[J];水電能源科學(xué);2013年03期
7 潘樹來;王全鳳;俞縉;;利用初流量法分析有自由面滲流問題之改進(jìn)[J];巖土工程學(xué)報(bào);2012年02期
8 蔣勝銀;李連俠;廖華勝;楊華;鄒俊;;滲流自由面數(shù)值模擬方法比較[J];長江科學(xué)院院報(bào);2011年07期
9 姜清輝;鄧書申;周創(chuàng)兵;;有自由面滲流分析的三維數(shù)值流形方法[J];巖土力學(xué);2011年03期
10 吳世余;宋新江;;不透水地基上堤壩滲流計(jì)算的理論解[J];巖土工程學(xué)報(bào);2010年11期
相關(guān)博士學(xué)位論文 前2條
1 張連杰;降雨入滲條件下膨脹土邊坡穩(wěn)定性分析[D];中國地質(zhì)大學(xué)(北京);2016年
2 徐穎;強(qiáng)降雨作用下類土質(zhì)滑坡演化過程及破壞機(jī)理研究[D];中國地質(zhì)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前2條
1 鄧苑苑;病險(xiǎn)土石壩滲流破壞機(jī)理分析[D];石河子大學(xué);2006年
2 付成華;非均質(zhì)土石壩穩(wěn)定—非穩(wěn)定滲流有限元分析[D];武漢大學(xué);2004年
,本文編號:2463255
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2463255.html