近大氣壓DBD微放電模式與氧等離子體反應效能研究
發(fā)布時間:2018-06-15 13:32
本文選題:氣壓 + 放電模式 ; 參考:《大連海事大學》2017年碩士論文
【摘要】:利用高頻激勵強電場放電的高級氧化技術能夠快速有效地處理船舶壓載水和飲用水,該技術中氧等離子體反應器模塊是核心組件,氧等離子體反應效能直接影響水處理效果。實際工作中,當反應器模塊的進氣量與氣液混溶射流器的運行速度不匹配時,反應器模塊的運行氣壓低于或高于大氣壓,變動范圍在60-150 kPa之間,影響氧活性粒子反應效能,最終影響水處理效果。本文利用自行設計的氧等離子體反應器,分別在60-100 kPa和100-150 kPa氣壓條件下,研究了氣壓對氧活性粒子反應效能的影響,并借助針-板放電裝置探究了氣壓對單微放電的放電狀態(tài)和放電模式的影響。結果顯示,單微放電在激勵電壓正負半周期內表現(xiàn)出不同的放電模式,激勵電壓正半周期放電模式為微流注放電,負半周期放電模式為微類輝光放電。運行氣壓與激勵功率改變使得反應器模塊中放電氣隙折合場強度變化,導致在施加不同功率時,模塊表現(xiàn)出不同的放電特性與等離子體化學反應效能。放電氣隙折合電場強度是影響氧活性粒子反應效能的主要因素,當氧等離子體反應器內氣壓降低時,放電氣隙折合電場強度增強,O_2電離度增大,氣體放電尺度增大,放電強度增強,放電氣隙擊穿電壓降低,單位時間放電電流脈沖數(shù)量增多,放電電流脈沖幅值減小,首個放電電流脈沖出現(xiàn)時間提前,放電氣隙等效電阻減小,電介質層等效電容增大?梢酝ㄟ^調節(jié)氣壓和激勵功率控制折合電場強度。在媒質氣體為O_2的條件下,氧等離子體反應器模塊存在最優(yōu)折合電場強度,低于該折合電場強度,氧活性粒子反應效能隨折合電場強度增強而增加,高于該電場強度,則會受等離子體化學反應過程中產生的反應熱等因素的影響,氧活性粒子反應效能隨折合電場強度增強而反而降低。在實際應用中,為使氧活性粒子反應效能最大,需根據(jù)氧活性粒子反應器內氣壓條件調節(jié)激勵功率,當反應器在常壓運行時激勵功率要控制在250-300 W,氣壓降低到60 kPa時激勵功率要控制在150 W,而當氣壓升高到150 kPa時激勵功率要控制在400 W,使氧等離子體反應器模塊處于最佳工作狀態(tài),從而更好地為相關水處理技術服務。
[Abstract]:The advanced oxidation technology with high frequency excited strong electric field discharge can deal with ship ballast water and drinking water quickly and effectively. The oxygen plasma reactor module is the core component in this technology, and the efficiency of oxygen plasma reaction directly affects the water treatment effect. In practice, when the air intake of the reactor module does not match the speed of the gas-liquid mixed jet reactor, the operating pressure of the reactor module is lower or higher than the atmospheric pressure, and the range of variation is 60-150 KPA, which affects the reaction efficiency of the oxygen active particles. Finally, the effect of water treatment is affected. In this paper, the effect of air pressure on the reaction efficiency of oxygen active particles was studied under the pressure of 60-100 KPA and 100-150 KPA, respectively, using a self-designed oxygen plasma reactor. The effect of air pressure on the discharge state and discharge mode of single micro discharge was investigated by means of a needle-plate discharge device. The results show that there are different discharge modes in the positive and negative half period of the excitation voltage. The positive half period discharge mode of the excitation voltage is a micro current discharge mode, and the negative half period discharge mode is a micro glow discharge mode. The change of operating pressure and exciting power makes the discharge air gap change in the reactor module, resulting in different discharge characteristics and chemical reaction efficiency of plasma when different power is applied. The electric field intensity of the discharge gap is the main factor affecting the reaction efficiency of the oxygen active particles. When the pressure in the oxygen plasma reactor decreases, the discharge air gap electric field intensity increases, the ionization degree of the gas discharge increases and the discharge scale of the gas increases. With the increase of discharge intensity, the breakdown voltage of discharge gap decreases, the number of discharge current pulses increases, the amplitude of discharge current pulse decreases, the first discharge current pulse appears earlier, and the equivalent resistance of discharge air gap decreases. The equivalent capacitance of dielectric layer increases. The reduced electric field intensity can be controlled by regulating air pressure and exciting power. Under the condition that the medium gas is O _ 2, the oxygen plasma reactor module has an optimal reduced electric field intensity, which is lower than that of the oxygen plasma reactor module, and the reaction efficiency of the oxygen active particle increases with the increase of the reduced electric field strength, which is higher than that of the electric field. The reaction efficiency of oxygen active particles decreases with the increase of electric field strength. In practical application, in order to maximize the reaction efficiency of oxygen active particles, it is necessary to adjust the excitation power according to the pressure conditions in the oxygen active particle reactor. When the reactor operates at atmospheric pressure, the excitation power should be controlled at 250-300 W, when the pressure is reduced to 60 KPA, the excitation power should be controlled at 150 W, and when the pressure rises to 150 KPA, the excitation power should be controlled at 400 W, so that the oxygen plasma reactor module will be controlled. In the best working condition, In order to better serve the related water treatment technology.
【學位授予單位】:大連海事大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O461
【參考文獻】
相關期刊論文 前4條
1 李日紅;白敏冬;徐書婧;田一平;李延建;楊海東;;采用強電離放電生成高濃度氧活性粒子溶液[J];高電壓技術;2014年10期
2 侯世英;曾鵬;孫韜;羅書豪;張立帥;高晉;;介質阻擋放電在水處理中的影響因素分析[J];高電壓技術;2014年01期
3 賴饒昌;林麒;;不同氣壓條件下空氣介質阻擋放電的特性[J];壓電與聲光;2008年03期
4 王新新,蘆明澤,蒲以康;空氣中大氣壓下均勻輝光放電的可能性[J];物理學報;2002年12期
相關博士學位論文 前2條
1 俞哲;分區(qū)激勵式大氣壓非平衡等離子體反應器陣列研究[D];大連海事大學;2015年
2 張拿慧;羥基自由基的高效生成及處理船舶壓載水的海洋環(huán)境安全研究[D];大連海事大學;2013年
,本文編號:2022168
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2022168.html