電子束作用下氧化鋯熱障涂層傳熱數(shù)值模擬與實(shí)驗(yàn)
本文選題:大氣等離子體噴涂 + 氧化鋯熱障涂層; 參考:《深圳大學(xué)》2017年碩士論文
【摘要】:大氣等離子體噴涂制備氧化鋯熱障涂層是目前主流的生產(chǎn)工藝,它具有生產(chǎn)效率高、制備的涂層質(zhì)量好、成本較低等優(yōu)點(diǎn),同時(shí)涂層存在孔隙率高、致密度低和服役時(shí)間短等缺陷。服役過程中孔隙的存在致使高溫?zé)崃骰蚱渌g介質(zhì)通過孔隙對金屬材料造成腐蝕,導(dǎo)致涂層隔熱失效,甚至造成涂層脫落。本文通過建立氧化鋯涂層傳熱模型,對大氣壓等離子體制備的氧化鋯熱障涂層電子束重熔過程中傳熱進(jìn)行數(shù)值模擬并開展重熔實(shí)驗(yàn),實(shí)現(xiàn)對涂層的封孔處理。研究初步結(jié)果表明:氧化鋯涂層在電子束作用下,涂層的溫度分布及重熔深度取決于電子束功率密度、作用時(shí)間。當(dāng)功率密度分別在0.8-1.4 GW/m~2、9-10.5MW/m~2間變化時(shí),相應(yīng)的作用時(shí)間為200μs、100ms,計(jì)算表明,涂層表面溫度隨著功率密度的增加而增加,涂層表面50μm厚度縱向最大溫度梯度分別為:2.0×10~5K/cm和1.9×10~5K/cm,最大重熔深度為80μm和83μm。當(dāng)功率密度分別為1.4GW/m~2、10.5MW/m~2時(shí),相應(yīng)作用時(shí)間在50-200μs、30-100ms區(qū)間變化時(shí),涂層表面溫度隨著時(shí)間的增加而增加。對不同噴涂功率制備的氧化釔穩(wěn)定氧化鋯熱障涂層(YSZ涂層)進(jìn)行主要性能表征和測試,獲取最佳工藝參數(shù)制備涂層。制備的YSZ涂層分別在強(qiáng)流脈沖電子束(3.8GW/m~2、脈沖時(shí)間200μs、脈沖次數(shù)50)、掃描電子束(25 MW/m~2、100ms)作用下進(jìn)行重熔封孔處理并表征。實(shí)驗(yàn)表明:重熔后涂層孔隙幾乎完全封閉,孔隙率比重熔前降低了50-80%,最低只有2.59%;X射線衍射分析表明,氧化鋯熱障涂層在電子束高溫作用下發(fā)生脫氧和氮化,生成了黑色的Zr_2ON_2;表面顯微硬度提升了26%-57%;通過吹砂實(shí)驗(yàn)測試,經(jīng)電子束重熔后的涂層耐沖刷能力提升了33%-560%。重熔處理后氧化鋯涂層的性能有了顯著的提升。
[Abstract]:The thermal barrier coating of zirconia prepared by atmospheric plasma spraying is the mainstream production technology at present. It has the advantages of high production efficiency, good quality and low cost, and the porosity of the coating is high. Low density and short service time. The existence of pores during service results in the corrosion of metallic materials by high temperature heat flux or other corrosive media through pores, which results in the failure of thermal insulation and even the exfoliation of coatings. In this paper, a heat transfer model of zirconia coating is established to simulate the heat transfer during electron beam remelting of zirconia thermal barrier coating prepared by atmospheric pressure plasma. The preliminary results show that the temperature distribution and remelting depth of zirconia coating depend on the electron beam power density and the action time. When the power density varies between 0.8-1.4 GW / m ~ 2 ~ 10.5MW / m ~ 2, the corresponding time is 200 渭 s / m ~ (-1). The calculation shows that the surface temperature of the coating increases with the increase of the power density. The longitudinal maximum temperature gradient of 50 渭 m thickness on the surface of the coating is 1: 2.0 脳 10 ~ (5) K / cm and 1.9 脳 10 ~ (5) K / cm, respectively. The maximum remelting depth is 80 渭 m and 83 渭 m, respectively. When the power density is 1.4 GW / m ~ 2 and 10.5 MW / m ~ 2 respectively, the surface temperature of the coating increases with the increase of time when the corresponding time varies in the range of 50-200 渭 s / m ~ (-1) Ms. The main properties of yttrium stabilized zirconia thermal barrier coating prepared by different spraying power were characterized and tested. The optimum process parameters were obtained to prepare the coating. The YSZ coatings were remelted and characterized under the action of high current pulsed electron beam 3.8GW / m-2, pulse time 200 渭 s, pulse number 50 渭 s, and scanning electron beam 25MW / m ~ 2100ms). The experimental results show that the pores of the coating are almost completely closed after remelting, the porosity of the coating is reduced by 50-80 than that before remelting, and the lowest is 2.59and X-ray diffraction analysis shows that the zirconia thermal barrier coating is deoxidized and nitrided under the action of electron beam at high temperature. A black Zr2ON _ 2 was formed; the surface microhardness was increased by 26-57; and the erosion resistance of the coating after electron beam remelting was increased by 33-560 through the sand blowing experiment. The properties of zirconia coating after remelting treatment were improved significantly.
【學(xué)位授予單位】:深圳大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:V231;O539
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉立群;周澤華;王澤華;江少群;丁瑩;;激光重熔處理等離子噴涂陶瓷涂層的研究現(xiàn)狀及展望[J];陶瓷學(xué)報(bào);2012年02期
2 王東生;田宗軍;王松林;沈理達(dá);黃因慧;;常規(guī)和納米ZrO_2-7%Y_2O_3等離子噴涂熱障層及其激光重熔后的抗熱震性能[J];材料保護(hù);2012年05期
3 郭洪波;宮聲凱;徐惠彬;;先進(jìn)航空發(fā)動(dòng)機(jī)熱障涂層技術(shù)研究進(jìn)展[J];中國材料進(jìn)展;2009年Z2期
4 何俊;陳威;于斌;;電子束熔覆粉末涂層表面改性的研究[J];粉末冶金工業(yè);2009年03期
5 張志彬;閻殿然;高國旗;高楊;安雪川;張乾;;等離子噴涂氧化鋯涂層封孔處理的研究現(xiàn)狀[J];佛山陶瓷;2009年03期
6 何俊;于斌;張濤;張永和;陳小玲;;預(yù)置涂層電子束熔覆改性技術(shù)研究[J];航天制造技術(shù);2008年06期
7 周創(chuàng)兵;陳益峰;姜清輝;;巖體表征單元體與巖體力學(xué)參數(shù)[J];巖土工程學(xué)報(bào);2007年08期
8 段忠清;王澤華;林萍華;陳雪菊;;等離子噴涂技術(shù)發(fā)展現(xiàn)狀及其應(yīng)用研究[J];滁州職業(yè)技術(shù)學(xué)院學(xué)報(bào);2006年04期
9 鄧世鈞;高性能陶瓷涂層技術(shù)[J];表面工程資訊;2003年06期
10 鄧世均;熱障陶瓷涂層的最新發(fā)展[J];材料保護(hù);2003年03期
,本文編號(hào):1996150
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1996150.html