全固態(tài)短脈沖Nd:CNGS激光特性研究
本文選題:Nd:CNGS晶體 + 短脈沖。 參考:《山東大學(xué)》2017年碩士論文
【摘要】:全固態(tài)短脈沖激光器以其結(jié)構(gòu)簡(jiǎn)單、穩(wěn)定性好、使用壽命長(zhǎng)、光束質(zhì)量高、效率高、熱效應(yīng)小等優(yōu)勢(shì),在工業(yè)、軍事、醫(yī)療等多個(gè)領(lǐng)域都有很重要的應(yīng)用。全固態(tài)脈沖激光器的發(fā)展很大程度上得益于固體激光增益介質(zhì)的探索與拓展。目前使用最廣泛的激光增益介質(zhì)是摻雜激活離子晶體,其中以Nd3+離子摻雜晶體的研究與應(yīng)用最為廣泛,Nd:YAG、Nd:YVO4、Nd:YLF、Nd:YAP等晶體為代表的激光增益介質(zhì)已有大量的研究和應(yīng)用。但是近年來(lái),隨著各行各業(yè)對(duì)激光器件的要求越來(lái)越高,探索新的激光晶體及其特性就成為人們不斷追求的方向和目標(biāo)。1998年,俄羅斯研究者首次報(bào)道并詳細(xì)分析Ca3NbGa3Si2O14(CNGS)晶體的性能,證明它是一種性能優(yōu)良的壓電晶體。近年來(lái),研究者針對(duì)CNGS晶體良好的熱學(xué)和光學(xué)性能,提出此類(lèi)晶體有望成為一種新型激光晶體的基質(zhì)材料。本重點(diǎn)實(shí)驗(yàn)室郭世義老師課題組通過(guò)大量的調(diào)研和實(shí)驗(yàn)探索,首次獲得一系列摻雜濃度不同的Nd:CNGS晶體。在此基礎(chǔ)上,我們課題組與郭世義教授課題組展開(kāi)合作,對(duì)Nd:CNGS晶體的力學(xué)、熱學(xué)、光譜及多功能復(fù)合特性研究,并提出Nd:CNGS晶體在超短脈沖激光器件領(lǐng)域中存在一定的發(fā)展前景。因此,本論文主要工作是在前期Nd:CNGS晶體物理光學(xué)性質(zhì)測(cè)試和連續(xù)波激光特性研究基礎(chǔ)上,開(kāi)展Nd:CNGS晶體調(diào)Q和鎖模短脈沖激光器特性研究。主要研究工作包括:Ⅰ對(duì)調(diào)Q原理進(jìn)行簡(jiǎn)單介紹,分析了聲光調(diào)Q技術(shù)的基本理論;采用聲光Q開(kāi)關(guān),實(shí)現(xiàn)主動(dòng)調(diào)Q Nd:CNGS晶體脈沖激光輸出;通過(guò)設(shè)置不同重復(fù)頻率,測(cè)量在不同泵浦功率下,相應(yīng)的平均輸出功率和脈沖寬度,計(jì)算相應(yīng)的峰值功率和單脈沖能量。其中,最窄脈沖寬度為13.8 ns,最大單脈沖能量為92.7μJ,最高峰值功率為6.3 kW。Ⅱ簡(jiǎn)單介紹了 Cr:YAG、V:YAG晶體;以Cr:YAG晶體為可飽和吸收體為例,詳細(xì)分析了被動(dòng)調(diào)Q的理論;并在實(shí)驗(yàn)上得到Cr:YAG和V:YAG被動(dòng)調(diào)Q Nd:CNGS晶體脈沖激光。最終,采用y切Nd:CNGS晶體得到最大平均輸出功率為0.59 W、脈寬為22.89 ns、重頻為11.7 kHz、最大單脈沖能量為50.43 μJ、最高峰值功率為2.20 kW的脈沖激光。Ⅲ對(duì)層狀黑磷可飽和吸收鏡的制備方法進(jìn)行簡(jiǎn)單介紹;采用少層黑磷作為調(diào)制元件,實(shí)現(xiàn)Nd:CNGS晶體1.3 μm被動(dòng)調(diào)Q激光輸出,對(duì)應(yīng)最窄脈寬0.99μs,最大單脈沖能量1.88 μJ。Ⅳ對(duì)鎖模原理進(jìn)行了簡(jiǎn)單分析,提出了抑制鎖模中經(jīng)常出現(xiàn)的調(diào)Q鎖模趨勢(shì)的解決方法;采用SESAM為調(diào)制元件,得到Nd:CNGS晶體1.0μm皮秒激光輸出,最短脈寬1.0 ps、中心波長(zhǎng)1065 nm、重頻49.2 MHz、最大輸出功率115 mW、對(duì)應(yīng)單脈沖能量2.33 nJ和峰值功率2.23 kW。Ⅴ對(duì)鎖模激光器中的色散補(bǔ)償進(jìn)行簡(jiǎn)單分析;并且對(duì)Nd:CNGS晶體皮秒脈沖激光腔內(nèi)加入色散補(bǔ)償啁啾鏡對(duì)腔內(nèi)的正色散進(jìn)行補(bǔ)償,成功將鎖模脈寬壓縮至759 fs,最大輸出功率為133 mW、單脈沖能量和峰值功率為3.1 nJ和4.1 kW。實(shí)驗(yàn)結(jié)果表明Nd:CNGS晶體對(duì)實(shí)現(xiàn)飛秒量級(jí)的超快激光很有優(yōu)勢(shì)。
[Abstract]:All solid-state short pulse laser has the advantages of simple structure, good stability, long service life, high quality of light beam, high efficiency and low thermal effect. It has very important applications in many fields, such as industry, military and medical treatment. The development of all solid state pulse laser is greatly beneficial to the exploration and expansion of solid laser gain medium. The most widely used laser gain medium is the doped activating ion crystal. The research and application of Nd3+ ion doped crystals is the most widely used. The laser gain media, such as Nd:YAG, Nd:YVO4, Nd:YLF and Nd:YAP, have been widely studied and applied. However, in recent years, the demand for laser devices is becoming higher and higher, and new exploration has been made. The laser crystal and its characteristics have become the direction and target of continuous pursuit in.1998 years. Russian researchers first reported and analyzed the performance of Ca3NbGa3Si2O14 (CNGS) crystal for the first time, and proved that it is a kind of piezoelectric crystal with excellent performance. In recent years, researchers have proposed such crystals in view of the good thermal and optical properties of CNGS crystals. As a matrix material for a new type of laser crystal, the research group of Guo Shiyi, the key laboratory, has obtained a series of Nd:CNGS crystals with different doping concentration through a lot of investigation and experimental exploration. On this basis, we cooperate with Professor Guo Shiyi to study the mechanics, heat, spectra and many of the Nd:CNGS crystals. It is suggested that Nd:CNGS crystals have some potential in the field of ultrashort pulse laser devices. Therefore, the main work of this thesis is to study the characteristics of Nd:CNGS crystal Q and mode locked short pulse lasers on the basis of the physical and optical properties of the early Nd:CNGS crystals and the study of the characteristics of the continuous wave laser. The research work includes: I briefly introduce the principle of Q modulation, analyze the basic theory of the sound and light modulation Q technology, and use the acoustooptic Q switch to realize the active modulation of Q Nd:CNGS crystal pulse laser output. By setting different repetition frequencies, the corresponding average output power and pulse width are measured at different pump power, and the corresponding peak power is calculated and the corresponding peak power is calculated. One pulse energy, of which the narrowest pulse width is 13.8 ns, the maximum single pulse energy is 92.7 mu J, the maximum peak power is 6.3 kW. II. The Cr:YAG, V:YAG crystal is briefly introduced. The theory of passive Q is analyzed in detail with Cr:YAG crystal as a saturable absorber, and Cr:YAG and V:YAG passive Q Nd:CNGS crystal pulse laser is obtained experimentally. Finally, the maximum average output power of the Nd:CNGS crystal is 0.59 W, the pulse width is 22.89 ns, the heavy frequency is 11.7 kHz, the maximum single pulse energy is 50.43 u J, the maximum peak power is 2.20 kW, and the preparation method of the layered black phosphorus saturable absorpable mirror is briefly introduced, and N is used as the modulation element to realize N. D:CNGS crystal 1.3 mu m passively modulated Q laser output, corresponding to the narrowest pulse width of 0.99 Mu s, and the maximum single pulse energy 1.88 mu J. IV, a simple analysis of the mode locking principle is carried out. A solution to restrain the tendency of modulating Q mode locked frequently in the mode lock is proposed. The SESAM is used as the modulation element to obtain the 1 mu m picosecond laser output of Nd: CNGS crystal, and the shortest pulse width is 1 ps. The central wavelength is 1065 nm, a heavy frequency 49.2 MHz and a maximum output power of 115 mW. A simple analysis is made for the dispersion compensation in a mode locked laser with a monopulse energy 2.33 nJ and a peak power 2.23 kW. v. And a dispersion compensation chirp is added to the cavity of a picosecond pulse laser to compensate the positive dispersion in the cavity. The maximum output power is 759 FS and the maximum output power is 133 mW. The experimental results of single pulse energy and peak power of 3.1 nJ and 4.1 kW. show that the Nd:CNGS crystal has a great advantage for the realization of the ultrafast laser at the magnitude of the femtosecond.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TN248
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 羅山;啁啾反射鏡將短脈沖推至極限[J];激光與光電子學(xué)進(jìn)展;2003年07期
2 徐捷;景春陽(yáng);張桂燕;樂(lè)耀康;王世明;;短脈沖毛細(xì)管標(biāo)準(zhǔn)氙燈的研制[J];計(jì)量技術(shù);1983年05期
3 章冠人;鋁靶對(duì)短脈沖強(qiáng)激光反射率的飽和現(xiàn)象[J];強(qiáng)激光與粒子束;1995年04期
4 王中陽(yáng),張正泉,徐至展;短脈沖高斯光束的時(shí)空形式[J];光學(xué)學(xué)報(bào);1997年02期
5 周之奎,衛(wèi)玉章;凝聚炸藥的短脈沖沖擊起爆[J];爆炸與沖擊;1992年01期
6 袁鋼,周光泉,唐志平,李欣增;高壓短脈沖激波的傳播及衰減[J];爆炸與沖擊;1992年04期
7 晨維;;短脈沖將擴(kuò)大激光的應(yīng)用范圍[J];激光與光電子學(xué)進(jìn)展;1981年08期
8 肖連團(tuán),李昌勇,劉玉蓮,郭淑琴,賈鎖堂,周?chē)?guó)生;短脈沖激光泵浦的光熱偏折光譜理論[J];量子光學(xué)學(xué)報(bào);1998年01期
9 黃華,孟凡寶,常安碧,馬喬生,張永輝,甘延青,陳代兵,羅敏,龔勝綱;強(qiáng)流短脈沖相對(duì)論速調(diào)管放大器實(shí)驗(yàn)研究[J];強(qiáng)激光與粒子束;2004年10期
10 彭航宇;寧宇;劉云;張巖;寧永強(qiáng);王立軍;;大功率短脈沖VCSELs的特性研究[J];激光與紅外;2008年05期
相關(guān)會(huì)議論文 前7條
1 黃華;孟凡寶;常安碧;馬喬生;張永輝;甘延青;陳代兵;羅敏;龔勝剛;;強(qiáng)流短脈沖相對(duì)論速調(diào)管放大器的實(shí)驗(yàn)[A];中國(guó)工程物理研究院科技年報(bào)(2003)[C];2003年
2 王桂吉;趙劍衡;唐小松;吳剛;匡學(xué)武;韓梅;;炸藥的短脈沖沖擊起爆實(shí)驗(yàn)技術(shù)研究[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(上)[C];2005年
3 童玲;王文祥;張兆鏜;孫嘉鴻;;高功率單次短脈沖微波峰值功率測(cè)量研究[A];中國(guó)電子學(xué)會(huì)真空電子學(xué)分會(huì)第十一屆學(xué)術(shù)年會(huì)論文集[C];1997年
4 劉鐘陽(yáng);吳彥;王寧會(huì);張彥彬;;雙極性短脈沖介質(zhì)阻擋放電及應(yīng)用于臭氧發(fā)生的試驗(yàn)研究[A];中國(guó)物理學(xué)會(huì)第九屆靜電學(xué)術(shù)年會(huì)論文集[C];2000年
5 肖燕;郭淑琴;李仲豪;周?chē)?guó)生;;厄米—高斯型短脈沖的各參量在光纖中傳輸?shù)姆治鯷A];全國(guó)第十次光纖通信暨第十一屆集成光學(xué)學(xué)術(shù)會(huì)議(OFCIO’2001)論文集[C];2001年
6 鄭春陽(yáng);朱少平;賀賢土;;強(qiáng)激光在稀薄等離子體中傳播產(chǎn)生的自生磁場(chǎng)[A];中國(guó)工程物理研究院科技年報(bào)(1999)[C];1999年
7 胡元峰;虞孝麒;;基于雪崩電路原理產(chǎn)生高壓短脈沖的初步研究[A];第十三屆全國(guó)核電子學(xué)與核探測(cè)技術(shù)學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2006年
相關(guān)重要報(bào)紙文章 前1條
1 記者 張孟軍;天文學(xué)家破解伽馬射線短脈沖之謎[N];科技日?qǐng)?bào);2005年
相關(guān)碩士學(xué)位論文 前6條
1 焦石;復(fù)合晶體短脈沖532nm激光器的研究[D];長(zhǎng)春理工大學(xué);2014年
2 李P;全固態(tài)短脈沖Nd:CNGS激光特性研究[D];山東大學(xué);2017年
3 蘇飛蛟;天光一號(hào)系統(tǒng)前端短脈沖產(chǎn)生及整形研究[D];哈爾濱工業(yè)大學(xué);2011年
4 滕云鵬;短脈沖KrF光源的研究[D];哈爾濱工業(yè)大學(xué);2008年
5 劉春波;激光振蕩淬滅法獲得KrFASE短脈沖研究[D];哈爾濱工業(yè)大學(xué);2010年
6 宗陽(yáng);強(qiáng)流短脈沖電子槍研究[D];中國(guó)科學(xué)院研究生院(近代物理研究所);2014年
,本文編號(hào):1884448
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1884448.html