柳樹水培扦插對水體重金屬污染修復作用研究
發(fā)布時間:2020-11-04 08:22
重金屬可在土壤或水體中富集,并通過植物吸收在生物體中積累,隨著食物鏈從低營養(yǎng)級向高營養(yǎng)級逐步累積,對環(huán)境和人類的健康造成極大的危害。在諸多土壤和水體重金屬污染修復技術中,植物修復成本低,對環(huán)境零危害,是非常有效的修復技術。木本植物柳樹因其具有巨大的生物量,快速的生長速率和較強的適應性,被廣泛應用于土壤重金屬污染修復中。柳樹以水培的方式進行扦插繁殖有一定優(yōu)勢。本文主要以柳樹對重金屬的富集為基礎,從實際應用的角度出發(fā),通過比較三種柳樹對不同濃度的復合重金屬污染水體的耐受性和富集性差異,研究重金屬的交互作用對柳樹富集轉運重金屬能力的影響,分析四種重金屬等量單獨脅迫對柳樹逆境生理指標的影響,探討柳樹插條對重金屬和磷復合污染水體的修復能力以及用于水體重金屬污染修復的柳樹插條移栽到鉛鋅礦區(qū)用于土壤重金屬修復的可行性。主要研究結果如下:(1)三種柳樹在水體中均能短時間內生根發(fā)芽。與旱柳和垂柳相比,竹柳在非污染水體中生長最好,在污染水體中生長最差,地上及地下部位對復合重金屬的耐受性指數分別為43和40;旱柳盡管在非污染水體中生長不是最好,但在重金屬混合的污染水體中生長最好,地上及地下部位對復合重金屬耐受性指數分別為75和90。隨著復合重金屬處理濃度增大,品種之間的耐受性差異也增大。旱柳對復合重金屬污染具有較強的耐受性,其木質莖插條能夠富集重金屬,阻止重金屬向新生枝條部位的轉移。此結果表明,柳樹不同品種的生長狀況并不能反映出其對重金屬的富集能力。(2)三種柳樹在生根前,原始木質莖插條具有富集重金屬的能力,其能力的大小與插條直徑和插條來自于母本的位置有關。在單一重金屬Cd處理下,直徑大于1cm的插條,其地上和地下生物量分別為0.21g和0.04g,耐受性指數分別為74和82,對重金屬Cd的富集系數為0.12;而直徑小于1cm的插條,其地上和地下生物量分別為0.05g和0.02g,耐受性指數分別為40和50,對重金屬Cd的富集系數為0.01。由此可說明,旱柳原始木質莖插條直徑越大,其在重金屬污染環(huán)境中生長越好,具有更高的重金屬耐受性和重金屬富集能力。三個品種的柳樹中,與來自于原始木質莖底部的插條相比,來自于頂部的插條在復合重金屬處理前后都表現(xiàn)出較差的生長參數,但其新生枝條富集重金屬的含量卻較高。同樣時間內,來自頂部的旱柳插條對Cd、Cu、Pb和Zn的富集含量分別為5.7,20.8,20.2和101.8 μg/plant;而來自基部的旱柳插條對四種重金屬的富集含量分別為2.9,10.5,10.4和53.3μg/plant。以上結果表明,同種柳樹,不同的插條會呈現(xiàn)出不同的生長狀況及重金屬富集能力,其中,后兩者的相關性也存在差異。(3)與未生根的插條相比,旱柳根系的存在會改變重金屬Cd和Cu在各部位的分布及二者的相互作用,同時也會提高旱柳對重金屬的耐受性和富集能力。無根系的旱柳對Cu的耐受性為38,富集系數為0.15;具根系的旱柳對Cu的耐受性為67,富集系數為0.45。重金屬Cu會抑制旱柳對重金屬Cd的富集,卻會促進Cd向新生枝條的轉移,添加重金屬Cu后,Cd由木質莖到新生枝條的轉移系數由13.5增加為22.5。插條未生根時,重金屬Cd抑制Cu向新生枝條的轉運,卻促進插條對Cu的富集;而在插條生根后,重金屬Cd僅抑制根系對重金屬Cu的吸收。添加重金屬Cd后,無根系的插條對Cu的富集系數增加為0.2,有根系的插條對Cu的富集系數減少為0.36。(4)單一及混合重金屬Cd和Zn處理兩周后,旱柳根莖的相對伸長量及生物量并未受到顯著影響,但其生理功能卻受到傷害。葉綠素a和葉綠素b的含量在所有處理中均降低,而植物根系活力僅在Cd-Zn50和Cd-Zn100處理中降低,根莖SOD和POD活性僅在單一 Cd和Cd-Zn50處理中增強。重金屬Cd和Zn在地上部位的積累總量由植物部位和重金屬處理共同決定,Cd-Zn50處理下,Cd和Zn在葉片中的積累量為64mg/kg和97mg/kg,而在韌皮部中分別為161mg/kg和371mg/kg;在單一 Cd、Cd-Zn50和Cd-Zn200處理下,重金屬Cd在地上部位的積累量分別為93mg/kg、84mg/kg和68 mg/kg。無論哪種重金屬處理,重金屬Cd和Zn均在韌皮部富集最多,在木質部最少。另外,重金屬Cd和Zn在植物的吸收轉運中存在交互作用,具體表現(xiàn)為Zn抑制Cd在旱柳地上部位的富集,Cd促進Zn在旱柳地上部的積累。(5)在相對較短的生長時期,同種濃度的四種重金屬處理對旱柳新生莖和根的相對伸長量、鮮重和干重的影響不大,但卻激發(fā)了植物根莖生理的響應。四種重金屬處理均增大了根莖的POD活性和可溶性蛋白含量,降低了葉綠素含量,其中Cu對葉綠素的影響最大;重金屬Zn降低了根系活力,而Pb卻增大了根系活力;重金屬Cu和Pb增大了游離脯氨酸的含量;四種重金屬處理均在不同程度上增大了旱柳體內的SOD活性,且均尚未影響植物體的MDA含量。旱柳對同種濃度的四種重金屬具有不同的向上轉運能力,葉片中Zn含量為98mg/kg,遠大于葉片中Pb的含量(0.15mg/kg),大部分重金屬轉運至地上部位后,被儲存在植物的韌皮部。這些生理性變化的差異性一定程度上揭示了旱柳對逆境過程的生理響應和適應機制。(6)為了提高柳樹對重金屬的富集能力,研究了葉面施加磷肥對柳樹富集重金屬的作用。結果表明,葉面噴施磷肥會促進旱柳地上部位的生長和Cd從根系向地上部位的轉運,增強旱柳地下及地上部位對Cd的富集總量。此結果提示,旱柳作為水體重金屬修復植物時,在根系和葉面同時施加磷,不但能夠增強旱柳對重金屬的耐受性,而且能夠提高旱柳對重金屬Cd的富集效率。(7)水培的柳樹隨著培養(yǎng)時間的增加,水體環(huán)境不能滿足柳樹的繼續(xù)生長,因此可考慮將這些插條移植到土壤中,研究其對土壤重金屬的富集作用。結果表明,將旱柳插條水培三周,其地上及地下生物量分別為0.159g和0.056g;采用土培方式培養(yǎng)三周,其地上及地下生物量則為0.104g和0.035g。采用水培與土培結合的方式培養(yǎng)旱柳,能大大提高旱柳的生物量,并且移栽至土壤后的成活率可達75%以上。水培1周,旱柳地上生物量為0.066g,轉移到污染土壤中生長3周,其地上生物量增長率為342%(1W;1W-3S);水培2周旱柳地上生物量為0.123g,轉移到污染土壤中生長2周,其地上生物量增長率為454%(2W;2W-2S)。不同的前期預脅迫方式和預脅迫的時間會導致植物轉移到污染土壤后的總葉綠素含量,POD活性和根系活力呈現(xiàn)差異,這種差異是植物適應環(huán)境的正常響應。預水培處理的插條均比直接種植在污染土壤中的插條生物量增長更大,對污染環(huán)境的適應性更強。由此可見,將水培一段時間之后的旱柳插條移栽到污染土壤的方法可行的。綜上所述,采用工廠化水培扦插技術進行柳樹繁殖,柳樹插條能夠吸收水體中的重金屬,并且修復效果良好。柳樹富集水體重金屬的能力因柳樹品種、插條特性及重金屬種類的不同而呈現(xiàn)差異,其中旱柳和垂柳插條對重金屬Cd、Cu和Zn富集能力較強;在柳樹插條生根之前,其木質莖插條具有富集水體中重金屬Cd和Cu的能力,水體中各重金屬的相互作用會因根系的產生而發(fā)生變化;為減輕重金屬對旱柳的傷害,旱柳根莖中與抗逆性有關的酶活性增大,可溶性蛋白含量提高,葉綠素含量降低,其中Cu對葉綠素的傷害最大,Cd、Cu、Zn和Pb四種重金屬轉運至地上部位后,大部分被儲存在植物的韌皮部;柳樹的水培扦插繁殖技術可用于修復重金屬污染的水體,葉面磷肥的添加能夠增強旱柳對重金屬Cd的富集能力,并且用于水體重金屬污染修復的柳樹在一段時間后可以移植到礦區(qū)用于礦區(qū)土壤修復。
【學位單位】:南京大學
【學位級別】:博士
【學位年份】:2017
【中圖分類】:X52;S792.12
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Heavy metal pollution and remediation
1.1.1 Sources and harmful effects of heavy metals pollution
1.1.2 Remediation of heavy metals pollution
1.2 Phytoremediation
1.2.1 Define of phytoremediation
1.2.2 Plants selection for phytoremediation
1.3 Application and research of Salix in phytoremediation
1.3.1 Application of Salix in phytoremediation
1.3.2 Factors in accumulation and transportation of heavy metals by Salix
1.3.3 Heavy metals accumulation in plant tissues
1.4 Research objectives
Chapter 2 Effect of heavy metals combined stress on growth and metalsaccumulation of three Salix species with different cutting position
2.1 Introduction
2.2 Materials and methods
2.2.1 Plant materials and treatments
2.2.2 Growth parameters and Tolerance index (Ti) measurement
2.2.3 Heavy metal and Translocation factor (TF) analyses
2.2.4 Statistical analysis
2.3 Results and discussion
2.3.1 Growth parameters, biomass production, and Tolerance index ofSalix species
2.3.2 HM accumulation and above-ground TF-aerial of the Salix species
2.3.3 Growth parameters of different cutting position
2.3.4 HM content in different cutting positions
2.4 Conclusion
Chapter 3 Phytoextraction of initial cutting of S. matsudana for Cd and Cu
3.1 Introduction
3.2 Materials and methods
3.2.1 Plant materials and treatments
3.2.2 Growth parameters and Relative growth rate (RGR) determination
3.2.3 Biomass and Tolerance index (Ti) measurement
3.2.4 Heavy metal and Translocation factor (TF) analyses
3.2.5 Phytoextraction capacity (PC) analysis
3.2.6 Statistical analysis
3.3 Results and Discussion
3.3.1 Effect of cutting diameter on willow growth and its HMabsorptivity
3.3.2 Root system function in vegetation filters
3.3.3 Phytoextraction intensity of initial cuttings without rhizofiltration
3.3.4 Interactions between Cd and Cu in phytoremediation
3.4 Conclusion
Chapter 4 Effects of single and compound Cd and Zn treatment on the growth andphysiology of S. matsudana
4.1 Introduction
4.2 Materials and methods
4.2.1 Plant materials and treatments
4.2.2 Biomass production and Relative growth rate (RGR) determination
4.2.3 Heavy metal analyses
4.2.4 Enzyme activity measurement
4.2.5 Chlorophyll measurement
4.2.6 Root activity
4.2.7 Statistical analysis
4.3 Result and Discussion
4.3.1 RGR and biomass of S. matsudana with single and compoundstress of Cd and Zn
4.3.2 Chlorophyll content and Root activity of S. matsudana with singleand compound stress of Cd and Zn
4.3.3 Antioxidant enzymes activity of S. matsudana with single andcompound stress of Cd and Zn
4.3.4 Heavy metals concentration in different tissues of S. matsudanawith single and compound stress of Cd and Zn
4.4 Conclusion
Chapter 5 Effects of single heavy metal stress on the growth and physiology of S.matsudana under unity concentration of lead, cadmium, zinc and copper
5.1 Introduction
5.2 Materials and methods
5.2.1 Plant materials and treatments
5.2.2 Biomass production and Relative growth rate (RGR) determination
5.2.3 Heavy metal analyses
5.2.4 Enzyme activity measurement
5.2.5 Chlorophyll measurement and root activity
5.2.6 Estimation of lipid peroxidation
5.2.7 Soluble protein measurement
5.2.8 Free proline measurement
5.2.9 Statistical analysis
5.3 Result and Discussion
5.3.1 RGR and biomass of S. matsudana with different heavy metaltreatments
5.3.2 Total chlorophyll content of S. matsudana with different heavymetal treatments
5.3.3 Free proline content and root activity of S. matsudana withdifferent heavy metal treatments
5.3.4 Antioxidant enzymes activity of S. matsudana with different heavymetal treatments
5.3.5 MDA and soluble protein content of S. matsudana with differentheavy metal treatments
5.3.6 Heavy metals concentration in different tissues of S. matsudanawith different heavy metal treatments
5.4 Conclusion
Chapter 6 Effect of P fertilization on the growth and heavy metal accumulation of S.matsudana
6.1 Introduction
6.2 Materials and methods
6.2.1 Plant materials and treatments
6.2.2 Growth parameters and Relative growth rate (RGR) determination
6.2.3 Biomass and Tolerance index (Ti) measurement
6.2.4 Heavy metal and Translocation factor (TF) analyses
6.2.5 Statistical analysis
6.3 Results and discussion
6.3.1 Growth and biomass of S. matsudana
6.3.2 Weekly data of Salix matsudana with P and Cd addition treatment
6.3.3 Tolerance index (Ti) and Translocation factor (TF) of Salixmatsudana
6.3.4 Concentration and content of Cd in Salix matsudana with P and Cdaddition treatment
6.4 Conclusion
Chapter 7 Effect of hydroponic pre-treatment on growth and physiology of Smatsudana after transplant to contaminate soil
7.1 Introduction
7.2 Materials and methods
7.2.1 Plant materials and treatments
7.2.2 Biomass production and Relative growth rate (RGR) determination
7.2.3 Physiological index measurement
7.2.4 Statistical analysis
7.3 Result and Discussion
7.3.1 RGR of S. matsudana in different water culture
7.3.2 Moisture content of S. matsudana in different treatments andculture ways
7.3.3 Biomass production of S. matsudana before and after transplant tocontaminate soil
7.3.4 Total chlorophyll content in leaves of S. matsudana in differenttreatments and culture ways
7.3.5 Antioxidant enzymes activity of S. matsudana in differenttreatments and culture ways
7.3.6 Root activity of S. matsudana in different treatments and cultureways
7.4 Conclusion
Chapter 8 Summary
8.1 Conclusions
8.2 Prospects
References
List of publications (September 2013-December 2016)
Acknowledgments
本文編號:2869872
【學位單位】:南京大學
【學位級別】:博士
【學位年份】:2017
【中圖分類】:X52;S792.12
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Heavy metal pollution and remediation
1.1.1 Sources and harmful effects of heavy metals pollution
1.1.2 Remediation of heavy metals pollution
1.2 Phytoremediation
1.2.1 Define of phytoremediation
1.2.2 Plants selection for phytoremediation
1.3 Application and research of Salix in phytoremediation
1.3.1 Application of Salix in phytoremediation
1.3.2 Factors in accumulation and transportation of heavy metals by Salix
1.3.3 Heavy metals accumulation in plant tissues
1.4 Research objectives
Chapter 2 Effect of heavy metals combined stress on growth and metalsaccumulation of three Salix species with different cutting position
2.1 Introduction
2.2 Materials and methods
2.2.1 Plant materials and treatments
2.2.2 Growth parameters and Tolerance index (Ti) measurement
2.2.3 Heavy metal and Translocation factor (TF) analyses
2.2.4 Statistical analysis
2.3 Results and discussion
2.3.1 Growth parameters, biomass production, and Tolerance index ofSalix species
2.3.2 HM accumulation and above-ground TF-aerial of the Salix species
2.3.3 Growth parameters of different cutting position
2.3.4 HM content in different cutting positions
2.4 Conclusion
Chapter 3 Phytoextraction of initial cutting of S. matsudana for Cd and Cu
3.1 Introduction
3.2 Materials and methods
3.2.1 Plant materials and treatments
3.2.2 Growth parameters and Relative growth rate (RGR) determination
3.2.3 Biomass and Tolerance index (Ti) measurement
3.2.4 Heavy metal and Translocation factor (TF) analyses
3.2.5 Phytoextraction capacity (PC) analysis
3.2.6 Statistical analysis
3.3 Results and Discussion
3.3.1 Effect of cutting diameter on willow growth and its HMabsorptivity
3.3.2 Root system function in vegetation filters
3.3.3 Phytoextraction intensity of initial cuttings without rhizofiltration
3.3.4 Interactions between Cd and Cu in phytoremediation
3.4 Conclusion
Chapter 4 Effects of single and compound Cd and Zn treatment on the growth andphysiology of S. matsudana
4.1 Introduction
4.2 Materials and methods
4.2.1 Plant materials and treatments
4.2.2 Biomass production and Relative growth rate (RGR) determination
4.2.3 Heavy metal analyses
4.2.4 Enzyme activity measurement
4.2.5 Chlorophyll measurement
4.2.6 Root activity
4.2.7 Statistical analysis
4.3 Result and Discussion
4.3.1 RGR and biomass of S. matsudana with single and compoundstress of Cd and Zn
4.3.2 Chlorophyll content and Root activity of S. matsudana with singleand compound stress of Cd and Zn
4.3.3 Antioxidant enzymes activity of S. matsudana with single andcompound stress of Cd and Zn
4.3.4 Heavy metals concentration in different tissues of S. matsudanawith single and compound stress of Cd and Zn
4.4 Conclusion
Chapter 5 Effects of single heavy metal stress on the growth and physiology of S.matsudana under unity concentration of lead, cadmium, zinc and copper
5.1 Introduction
5.2 Materials and methods
5.2.1 Plant materials and treatments
5.2.2 Biomass production and Relative growth rate (RGR) determination
5.2.3 Heavy metal analyses
5.2.4 Enzyme activity measurement
5.2.5 Chlorophyll measurement and root activity
5.2.6 Estimation of lipid peroxidation
5.2.7 Soluble protein measurement
5.2.8 Free proline measurement
5.2.9 Statistical analysis
5.3 Result and Discussion
5.3.1 RGR and biomass of S. matsudana with different heavy metaltreatments
5.3.2 Total chlorophyll content of S. matsudana with different heavymetal treatments
5.3.3 Free proline content and root activity of S. matsudana withdifferent heavy metal treatments
5.3.4 Antioxidant enzymes activity of S. matsudana with different heavymetal treatments
5.3.5 MDA and soluble protein content of S. matsudana with differentheavy metal treatments
5.3.6 Heavy metals concentration in different tissues of S. matsudanawith different heavy metal treatments
5.4 Conclusion
Chapter 6 Effect of P fertilization on the growth and heavy metal accumulation of S.matsudana
6.1 Introduction
6.2 Materials and methods
6.2.1 Plant materials and treatments
6.2.2 Growth parameters and Relative growth rate (RGR) determination
6.2.3 Biomass and Tolerance index (Ti) measurement
6.2.4 Heavy metal and Translocation factor (TF) analyses
6.2.5 Statistical analysis
6.3 Results and discussion
6.3.1 Growth and biomass of S. matsudana
6.3.2 Weekly data of Salix matsudana with P and Cd addition treatment
6.3.3 Tolerance index (Ti) and Translocation factor (TF) of Salixmatsudana
6.3.4 Concentration and content of Cd in Salix matsudana with P and Cdaddition treatment
6.4 Conclusion
Chapter 7 Effect of hydroponic pre-treatment on growth and physiology of Smatsudana after transplant to contaminate soil
7.1 Introduction
7.2 Materials and methods
7.2.1 Plant materials and treatments
7.2.2 Biomass production and Relative growth rate (RGR) determination
7.2.3 Physiological index measurement
7.2.4 Statistical analysis
7.3 Result and Discussion
7.3.1 RGR of S. matsudana in different water culture
7.3.2 Moisture content of S. matsudana in different treatments andculture ways
7.3.3 Biomass production of S. matsudana before and after transplant tocontaminate soil
7.3.4 Total chlorophyll content in leaves of S. matsudana in differenttreatments and culture ways
7.3.5 Antioxidant enzymes activity of S. matsudana in differenttreatments and culture ways
7.3.6 Root activity of S. matsudana in different treatments and cultureways
7.4 Conclusion
Chapter 8 Summary
8.1 Conclusions
8.2 Prospects
References
List of publications (September 2013-December 2016)
Acknowledgments
本文編號:2869872
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/2869872.html
最近更新
教材專著